Категории
Самые читаемые
Лучшие книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (КВ) - БСЭ БСЭ

Большая Советская Энциклопедия (КВ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (КВ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 ... 58
Перейти на страницу:

  Стационарное уравнение Шрёдингера. Волны де Бройля описывают состояние частицы только в случае свободного движения. Если на частицу действует поле сил с потенциальной энергией V (называемой также потенциалом), зависящей от координат частицы, то волновая функция частицы y определяется дифференциальным уравнением, которое получается путём следующего обобщения гипотезы де Бройля. Для случая, когда движение частицы с заданной энергией E происходит в одном измерении (вдоль оси х), уравнение,. которому удовлетворяет волна де Бройля (5), может быть записано в виде:

,     (*)

где  — импульс свободно движущейся частицы (массы m). Если частица с энергией E движется в потенциальном поле V (x), не зависящем от времени, то квадрат её импульса (определяемый законом сохранения энергии) равен . Простейшим обобщением уравнения (*) является поэтому уравнение

.     (7)

  Оно называется стационарным (не зависящим от времени) уравнением Шрёдингера и относится к основным уравнениям К. м. Решение этого уравнения зависит от вида сил, т. е. от вида потенциала V (x). Рассмотрим несколько типичных случаев.

  1) V = const, E > V. Решением является волна де Бройля y = Ceikx, где  E - V — кинетическая энергия частицы.

  2) Потенциальная стенка:

  V = 0 при х < 0,

  V = V1 > 0 при х > 0.

  Если полная энергия частицы больше высоты стенки, т. е. E > V1, и частица движется слева направо (рис. 3), то решение уравнения (7) в области x < 0 имеет вид двух волн де Бройля — падающей и отражённой:

,

где

(волна с волновым числом k = –k0 соответствует движению справа налево с тем же импульсом p0), а при х > 0 проходящей волны де Бройля:

, где .

  Отношения |C1/C2|2 и |C'0/C0|2 определяют вероятности прохождения частицы над стенкой и отражения от неё. Наличие отражения — специфически квантовомеханическое (волновое) явление (аналогичное частичному отражению световой волны от границы раздела двух прозрачных сред): «классическая» частица проходит над барьером, и лишь импульс её уменьшается до значения .

  Если энергия частицы меньше высоты стенки, E < V (рис. 4, а), то кинетическая энергия частицы EV в области х > 0 отрицательна. В классической механике это невозможно, и частица не заходит в такую область пространства — она отражается от потенциальной стенки. Волновое движение имеет др. характер. Отрицательное значение  означает, что k — чисто мнимая величина, k = ic, где c вещественно. Поэтому волна eikx превращается в e—cx, т. е. колебательный режим сменяется затухающим (c > 0, иначе получился бы лишённый физического смысла неограниченный рост волны с увеличением х). Это явление хорошо известно в теории колебаний. Под энергетической схемой на рис. 4, арис. 4, б) изображено качественное поведение волновой функции y(х), точнее её действительной части.

  3) Две области, свободные от сил, разделены прямоугольным потенциальным барьером V, и частица движется к барьеру слева с энергией E < V (рис. 4, б). Согласно классической механике, частица отразится от барьера; согласно К. м., волновая функция не равна нулю и внутри барьера, а справа будет опять иметь вид волны де Бройля с тем же импульсом (т. е. с той же частотой, но, конечно, с меньшей амплитудой). Следовательно, частица может пройти сквозь барьер. Коэффициент (или вероятность) проникновения будет тем больше, чем меньше ширина и высота (чем меньше разность V — E) барьера. Этот типично квантовомеханический эффект, называемый туннельным эффектом, имеет большое значение в практических приложениях К. м. Он объясняет, например, явление альфа-распада — вылета из радиоактивных ядер a-частиц (ядер гелия). В термоядерных реакциях, протекающих при температурах в десятки и сотни млн. градусов, основная масса реагирующих ядер преодолевает электростатическое (кулоновское) отталкивание и сближается на расстояния порядка действия ядерных сил в результате туннельных (подбарьерных) переходов. Возможность туннельных переходов объясняет также автоэлектронную эмиссию — явление вырывания электронов из металла электрическим полем, контактные явления в металлах и полупроводниках и многие др. явления.

  Уровни энергии. Рассмотрим поведение частицы в поле произвольной потенциальной ямы (рис. 5). Пусть потенциал отличен от нуля в некоторой ограниченной области, причем V < 0 (силы притяжения). При этом и классическое, и квантовое движения существенно различны в зависимости от того, положительна или отрицательна полная энергия E частицы. При E > 0 «классическая» частица проходит над ямой и удаляется от неё. Отличие квантовомеханического движения от классического состоит в том, что происходит частичное отражение волны от ямы; при этом возможные значения энергии ничем не ограничены — энергия частицы имеет непрерывный спектр. При E < 0 частица оказывается «запертой» внутри ямы. В классической механике эта ограниченность области движения абсолютна и возможна при любых значениях E < 0. В К. м. ситуация существенно меняется. Волновая функция должна затухать по обе стороны от ямы, т. е. иметь вид е—c|х|. Однако решение, удовлетворяющее этому условию, существует не при всех значениях E, а только при определённых дискретных значениях. Число таких дискретных значений En может быть конечным или бесконечным, но оно всегда счётно, т. е. может быть перенумеровано, и всегда имеется низшее значение E0 (лежащее выше дна потенциальной ямы); номер решения n называется квантовым числом. В этом случае говорят, что энергия системы имеет дискретный спектр. Дискретность допустимых значений энергии системы (или соответствующих частот  где w = 2pn — угловая частота) — типично волновое явление. Его аналогии наблюдаются в классической физике, когда волновое движение происходит в ограниченном пространстве. Так, часто'ты колебаний струны или часто'ты электромагнитных волн в объёмном резонаторе дискретны и определяются размерами и свойствами границ области, в которой происходят колебания. Действительно, уравнение Шрёдингера математически подобно соответствующим уравнениям для струны или резонатора.

  Проиллюстрируем дискретный спектр энергии на примере квантового осциллятора. На рис. 6 по оси абсцисс отложено расстояние частицы от положения равновесия. Кривая (парабола) представляет потенциальную энергию частицы. В этом случае частица при всех энергиях «заперта» внутри ямы, поэтому спектр энергии дискретен. Горизонтальные прямые изображают уровни энергии частицы. Энергия низшего уровня ; это наименьшее значение энергии, совместимое с соотношением неопределённостей: положение частицы на дне ямы (E = 0) означало бы точное равновесие, при котором и х = 0, и р = 0, что невозможно, согласно принципу неопределённости. Следующие, более высокие уровни энергии осциллятора расположены на равных расстояниях через интервал ; формула для энергии n-го уровня:

En = .     (8)

  Над каждой горизонтальной прямой на рис.6 приведено условное изображение волновой функции данного состояния. Характерно, что число узлов волновой функции (т. е. число прохождений через 0) равно квантовому числу n энергетического уровня. По др. сторону ямы (за точкой пересечения уровня с кривой потенциала) волновая функция быстро затухает, в соответствии с тем, что говорилось выше.

  В общем случае каждая квантовомеханическая система характеризуется своим энергетическим спектром. В зависимости от вида потенциала (точнее, от характера взаимодействия в системе) энергетический спектр может быть либо дискретным (как у осциллятора), либо непрерывным (как у свободной частицы, — её кинетическая энергия может иметь произвольное положительное значение), либо частично дискретным, частично непрерывным (например, уровни атома при энергиях возбуждения, меньших энергии ионизации, дискретны, а при больших энергиях — непрерывны).

1 ... 14 15 16 17 18 19 20 21 22 ... 58
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская Энциклопедия (КВ) - БСЭ БСЭ торрент бесплатно.
Комментарии