Категории
Самые читаемые
Лучшие книги » Разная литература » Газеты и журналы » Интернет-журнал 'Домашняя лаборатория', 2007 №8 - Журнал «Домашняя лаборатория»

Интернет-журнал 'Домашняя лаборатория', 2007 №8 - Журнал «Домашняя лаборатория»

Читать онлайн Интернет-журнал 'Домашняя лаборатория', 2007 №8 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 172 173 174 175 176 177 178 179 180 ... 463
Перейти на страницу:
она будет меньше 0,01 А/см2, то выделится слишком мало металла, так как будут частично образовываться одновалентные ионы меди. При слишком высокой плотности тока сцепление покрытия с электродом будет слабым и при извлечении электрода из раствора оно может осыпаться.

На практике гальванические покрытия на металлах применяют прежде всего для защиты от коррозии и для получения зеркального блеска.

Кроме того, металлы, особенно медь и свинец, очищают с помощью анодного растворения и последующего выделения на катоде (электролитическое рафинирование).

Чтобы покрыть железо медью или никелем необходимо сначала тщательно очистить поверхность предмета. Для этого отполируем ее отмученным мелом и последовательно обезжирим разбавленным раствором едкого натра, водой и спиртом. Если предмет покрыт ржавчиной, надо протравить его заранее в 10–15 %-ном растворе серной кислоты.

Очищенное изделие подвесим в электролитической ванне (маленький аквариум или химический стакан), где оно будет служить в качестве катода.

Раствор для нанесения медного покрытия содержит в 1 л воды 250 г сульфата меди и 80-100 г концентрированной серной кислоты (Осторожно!). В данном случае анодом будет служить медная пластинка. Поверхность анода примерно должна быть равна поверхности покрываемого предмета. Поэтому надо всегда следить, чтобы медный анод висел в ванне на такой же глубине, как и катод.

Процесс будем проводить при напряжении 3–4 В (две аккумуляторные батареи) и плотности тока 0,02-0,4 А/см2. Температура раствора в ванне должна составлять 18–25 °C.

Обратим внимание на то, чтобы плоскость анода и покрываемая поверхность были параллельны друг другу. Предметы сложной формы лучше не использовать. Варьируя длительность электролиза, можно получать медное покрытие разной толщины.

Часто прибегают к предварительному меднению для того, чтобы на этот слой нанести прочное покрытие из другого металла. Особенно часто это применяется при хромировании железа, никелировании цинкового литья и в других случаях. Правда, для этой цели используют очень ядовитые цианидные электролиты.

Для приготовления электролита для никелирования в 450 мл воды растворим 25 г кристаллического сульфата никеля, 10 г борной кислоты или 10 г цитрата натрия. Цитрат натрия можно приготовить самим, нейтрализовав раствор 10 г лимонной кислоты разбавленным раствором едкого натра или раствором соды. Анодом пусть будет пластина никеля возможно большей площади, а в качестве источника напряжения возьмем аккумулятор. Величину плотности тока с помощью переменного сопротивления будем поддерживать равной 0,005 А/см2. Например, при поверхности предмета 20 см2 надо работать при силе тока 0,1 А. После получаса работы предмет будет уже отникелирован. Вытащим его из ванны и протрем тканью. Впрочем, процесс никелирования лучше не прерывать, так как тогда слой никеля может запассивироваться и последующее никелевое покрытие будет плохо держаться.

Чтобы достичь зеркального блеска без механической полировки, введем в гальваническую ванну так называемую блескообразующую добавку. Такими добавками служат, например, клей, желатина, сахар. Можно ввести в никелевую ванну, например, несколько граммов сахара и изучить его действие.

Чтобы приготовить электролит для хромирования железа (после предварительного меднения), в 100 мл воды растворим 40 г ангидрида хромовой кислоты СrО3 (Осторожно! Яд!) и точно 0,5 г серной кислоты (ни в коем случае не больше!). Процесс протекает при плотности тока около 0,1 А/см2, а в качестве анода используется свинцовая пластина, площадь которой должна быть несколько меньше площади хромируемой поверхности.

Никелевые и хромовые ванны лучше всего слегка подогреть (примерно до 35 °C). Обратим внимание на то, что электролиты для хромирования, особенно при длительном процессе и высокой силе тока, выделяют содержащие хромовую кислоту пары, которые очень вредны для здоровья. Поэтому хромирование следует проводить под тягой или на открытом воздухе, например на балконе.

При хромировании (а в меньшей степени и при никелировали) не весь ток используется на осаждение металла. Одновременно выделяется водород. На основании ряда напряжений следовало бы ожидать, что металлы, стоящие перед водородом, вообще не должны выделяться из водных растворов, а напротив должен был бы выделяться менее активный водород. Однако здесь, как и при анодном растворении металлов, катодное выделение водорода часто тормозится и наблюдается только при высоком напряжении. Это явление называют перенапряжением водорода, и оно особенно велико, например, на свинце. Благодаря этому обстоятельству может функционировать свинцовый аккумулятор. При зарядке аккумулятора вместо РЬО2 на катоде должен бы возникать водород, но, благодаря перенапряжению, выделение водорода начинается тогда, когда аккумулятор почти полностью заряжен.

4. Химия углерода

ЗАГЛЯНЕМ В ПРОШЛОЕ

Нашей планете уже около 5 миллиардов лет. Вначале она, вероятно, была раскаленным газовым шаром. Позднее в результате конденсации газов возникли металлы, камень, а потом и вода. К этому времени лишь некоторые газы окружали Землю, образуя ее первоначальную атмосферу. Однако прошло несколько миллиардов лет, а планета все еще был мертва. Только около миллиарда лет назад из неживой материи появились простейшие формы жизни.

В те далекие времена в атмосфере не было чистого кислорода, но было много углекислого газа (диоксида углерода). Растения — точно так же, как и теперь — строили из него и из влаги, содержащейся в почве, сложные соединения углерода. При этом в атмосферу выделялся свободный кислород. Так постепенно образовалась современная атмосфера, содержащая много кислорода и очень мало углекислого газа.

Соединения углерода, которые накапливались в растениях ранних эпох, большей частью подверглись превращениям под влиянием анаэробных бактерий. Из остатков отмерших растений образовались торф и каменный уголь. Этому процессу способствовало высокое давление минеральных отложений, которые постепенно осаждались на остатках растений. Движение земной коры, связанное с образованием гор, также благоприятствовало появлению угля, поскольку при этом повышались давление и температура. Признаки обильного и повсеместного растительного покрова нашей планеты особенно отчетливо обнаруживаются в каменном угле той эпохи, которая началась приблизительно 400 миллионов лет назад и длилась около 55 миллионов лет. Разумеется, эти растения отличались от современных. Судя по отпечаткам на каменном угле, в лесу тогда преобладали гигантские папоротники и плауны. По остаткам в современных образцах угля можно получить ясное представление о растительном и животном мире того времени.

Нефть и природный газ возникали на дне огромных озер и морей, где было необычайно много водорослей и водных животных. Погибая, они погружались на дно и без доступа воздуха, под влиянием бактерий превращались в гниющий гл. При гниении выделялся ядовитый сероводород, губительно действующий на остальные живые организмы. Из органических веществ возникали вначале жирные кислоты, а позднее — нефть и природный газ. Особенно благоприятными условиями для таких процессов отличался пермский период палеозойской эры. Именно с тех пор существуют многие из крупных месторождений нефти.

На территории, где в наши дни находится ГДР, не образовывалось больших запасов каменного угля и нефти. Небольшие запасы угля обнаружены в Цвиккау

1 ... 172 173 174 175 176 177 178 179 180 ... 463
Перейти на страницу:
На этой странице вы можете бесплатно скачать Интернет-журнал 'Домашняя лаборатория', 2007 №8 - Журнал «Домашняя лаборатория» торрент бесплатно.
Комментарии