- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (ГА) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Очень многие исследования Г. остались неопубликованными и в виде очерков, незаконченных работ, переписки с друзьями входят в его научное наследие. Вплоть до 2-й мировой войны оно тщательно разрабатывалось Гёттингенским учёным обществом, которое издало 12 тт. сочинений Г. Наиболее интересными в этом наследии являются дневник Г. и материалы по неевклидовой геометрии и теории эллиптических функций. Дневник содержит 146 записей, относящихся к периоду от 30 марта 1796, когда 19-летний Г. отметил открытие построения правильного 17-угольника, по 9 июля 1814. Эти записи дают отчётливую картину творчества Г. в первой половине его научной деятельности; они очень кратки, написаны на латинском языке и излагают обычно сущность открытых теорем. Материалы, относящиеся к неевклидовой геометрии, обнаруживают, что Г. пришёл к мысли о возможности построения наряду с евклидовой геометрией и геометрии неевклидовой в 1818, но опасение, что эти идеи не будут поняты, и, по-видимому, недостаточное сознание их научной важности были причиной того, что Г. их не разрабатывал далее и не опубликовывал. Более того, он категорически запрещал опубликовывать их тем, кого посвящал в свои взгляды. Когда вне всякого отношения к этим попыткам Г. неевклидова геометрия была построена и опубликована Н. И. Лобачевским , Г. отнёсся к публикациям Лобачевского с большим вниманием, был инициатором избрания его член-корреспондентом Гёттингенского учёного общества, но своей оценки великого открытия Лобачевского по существу не дал. Архивы Г. содержат также обильные материалы по теории эллиптических функций и своеобразную их теорию; однако заслуга самостоятельной разработки и публикации теории эллиптических функций принадлежит К. Якоби и Н. Абелю .
Соч.: Werke, Bd 1 —, Gött., 1908 —; в рус. пер. — Общие исследования о кривых поверхностях, в сборнике: Об основаниях геометрии, 2 изд., Каз., 1895; Теоретическая астрономия. (Лекции, читанные в Гёттингене в 1820—26 гг., записанные Купфером), в кн.: Крылов А. Н., Собр. трудов, т. 6, М. — Л., 1936; Письма П. С. Лапласа, К. Ф. Гаусса, Ф. В. Бесселя и др. к академику Ф. И. Шуберту, в сборнике: Научное наследство, т 1, М. — Л., 1948, с. 801—22.
Лит.: Клейн Ф., Лекции о развитии математики в 19 столетии, пер. с нем., ч. 1, М. — Л., 1937: Карл Фридрих Гаусс. Сб. ст., М., 1956.
К. Ф. Гаусс.
Гаусса - Крюгера проекция
Га'усса — Крю'гера прое'кция (иногда проекция Гаусса), одна из геодезических проекций .
Гаусса постоянная
Га'усса постоя'нная , одна из фундаментальных астрономических постоянных (обозначается k ). Первоначально определена К. Гауссом как приближённое значение корня квадратного из гравитационной постоянной k2 , входящей в формулу задачи двух тел (в небесной механике):
которая связывает массы Солнца mS , Земли mT и Луны mL с периодом обращения Р системы Земля—Луна по эллиптической орбите вокруг Солнца и с большой полуосью а этой орбиты, причём массу Солнца и указанную большую полуось а Гаусс принимал в качестве единиц массы и длины, а в качестве единицы времени — средние солнечные сутки. При принятых в его время значениях Р и отношений mT /mS , mL /mT Гаусс нашёл:
k = 0,01720209895.
Это значение k (которое считается точным) входит в современную систему фундаментальных астрономических постоянных и называется гауссовой постоянной (или Г. п.). Единица расстояния, соответствующая этому значению k и формуле (1), при условии, что единицей времени являются эфемеридные сутки (см. Время ), называют астрономической единицей (а. е.). Последняя несколько отличается от большей полуоси а орбиты системы Земля — Луна, которая в соответствии с формулой (1) и современными значениями Р, mT /mS , тL /mT составляет 1,000000032 a. e .
Ю. А. Рябов.
Гаусса принцип
Га'усса при'нцип , принцип наименьшего принуждения, один из вариационных принципов механики , согласно которому для механической системы с идеальными связями (см. Связи механические ) из всех кинематически возможных, т. e. допускаемых связями, движении, начинающихся из данного положения и с данными начальными скоростями, истинным будет то движение, для которого «принуждение» Z является в каждый момент времени наименьшим. Установлен К. Гауссом (1829).
Физическая величина, называемая «принуждением», вводится следующим образом. Свободная материальная точка с массой m при действии на неё заданной силы F будет иметь ускорение F/m ; если же на точку наложены связи, то её ускорение при действии той же силы F станет равным какой-то др. величине w . Тогда отклонение точки от свободного движения, вызванное действием связи, будет зависеть от разности этих ускорений, т. e. от F/m—w . Величину Z , пропорциональную квадрату этой разности, и называют «принуждением». Для одной точки
а для механической системы Z равняется сумме таких величин.
Рассмотрим, например, точку, которая начинает двигаться вдоль гладкой наклонной плоскости из положения А без начальной скорости (см. рис. ). Для неё кинематически возможно любое перемещение АВ, AB1 , AB2 ,... в этой плоскости с какими-то ускорениями w, w1 , w2 ,..; при свободном же падении точка совершила бы перемещение AC вдоль вертикали с ускорением g . Тогда отклонения точки от свободного движения изобразятся отрезками CB, CB1 , CB2 ,..., наименьшим из которых будет отрезок CB , перпендикулярный к наклонной плоскости. Следовательно, «принуждение» Z , пропорциональное квадратам CB, CB1 , CB2 ,..., будет наименьшим при движении вдоль линии наименьшего ската AD . Это и будет истинное движение точки, происходящее с ускорением w = gsina.
Г. п. пользуются для составления уравнений движения механических систем и изучения свойств этих движений.
Лит . см. при ст. Вариационные принципы механики .
Рис. к ст. Гаусса принцип.
Гаусса распределение
Га'усса распределе'ние , закон распределения вероятностей; то же, что нормальное распределение .
Гаусса система единиц
Га'усса систе'ма едини'ц , система электрических и магнитных величин с основными единицами сантиметр, грамм и секунда, в которой диэлектрическая и магнитная проницаемости являются безразмерными величинами, причём для вакуума они приняты равными единице. Единицы электрических величин в Г. с. е. равны единицам абсолютной электростатической системы СГСЭ, а единицы магнитных величин — единицам абсолютной электромагнитной системы СГСМ, в связи с чем Г. с; е. часто называют симметричной системой СГС (см. СГС система единиц ). Г. с. е. названа в честь К. Гаусса , высказавшего в 1832 идею создания абсолютной системы единиц с основными единицами миллиметр, миллиграмм и секунда и разработавшего эту систему (совместно с В. Вебером ) для измерений магнитных величин.
Лит.: Бурдун Г. Д., Единицы физических величин, 4 изд., M., 1967.
Г. Д. Бурдун.
Гаусса теорема
Га'усса теоре'ма , теорема электростатики , предложенная К. Гауссом и устанавливающая связь потока напряжённости Е электрического поля через замкнутую поверхность с величиной заряда q , находящегося внутри этой поверхности. Потоком вектора Е через элемент поверхности DSi называется произведение величины этого элемента и проекции Eni вектора Е на нормаль к DSi . Поток N через замкнутую поверхность S равен сумме потоков через все элементы поверхности. В абсолютной системе единиц Гаусса (СГС)
Г. т. вытекает из закона Кулона — закона взаимодействия неподвижных точечных зарядов в вакууме.
В диэлектрике Г. т. справедлива для потока вектора электрической индукции D :
где q — суммарный свободный заряд внутри поверхности S . Формула (2) представляет собой интегральную форму одного из уравнений Максвелла для электромагнитного поля (см. Электродинамика ) и выражает тот факт, что электрические заряды являются источниками электрического поля.

