- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Наблюдения и озарения или Как физики выявляют законы природы - Марк Перельман
Шрифт:
Интервал:
Закладка:
С научной литературой Ферми обходился по-иному: он читал краткую аннотацию к статье, а затем сам проводил расчет — если совпадало с результатом автора, статья считалась правильной и навсегда запоминалась, если нет — она отвергалась.
Ландау с молодых лет, после появления первых учеников, перестал сам читать научную литературу: новые работы, свои и чужие, сотрудники рассказывали на семинарах, он их прерывал, тут же показывал новые пути и указывал на недоработки авторов — его «скорость» мышления была уникальной — вот это и была наглядная учеба! Говорят, что дома у Ландау не было ни одной научной книги: великолепная память и возможность в любой момент вывести все необходимые соотношения самому делали их излишними (могу свидетельствовать об отсутствии научных книг дома у А. Д. Сахарова).
Все это показывает, как представляется, основные различия двух выделяемых групп ученых. «Учителя» мыслят логически, поэтому они могут показывать, как именно идет ход рассуждений, и этот подход могут перенимать слушатели. У «индивидуалистов» превалирует интуитивный подход, а его-то и нельзя ни объяснить, ни передать другим. Собственно, о том же говорит Эйнштейн в своих воспоминаниях: идеи возникают и формируются в смутном, невербальном виде, т. е. не на словесном уровне.
Если принять популярное среди психологов мнение о том, что левое полушарие мозга отвечает за логические построения, а правое — за эмоциональные, т. е. и за интуитивные реакции, то ученых можно разделить на две группы: на левополушарных, у которых довлеет логичность, а отсюда и возможность показать ход размышлений другим, обучить их, и на правополушарных, которым иногда и самим не ясно, откуда и как появилась первая идея (потом, конечно, всему должно найтись логическое объяснение, и поэтому по законченной работе трудно установить психологический тип автора-профессионала).
Глава 4 Квантовая механика[17]
На каждом существенно новом этапе познания нам всегда следует подражать Колумбу; который отважился оставить известный ему мир в почти безумной надежде найти землю за морем.
В. Гейзенберг
1. Первый сольвеевский конгрессВ 1911 г. Вальтер Нернст сумел уговорить химика и удачливого предпринимателя Эрнеста Сольве организовать в Брюсселе конгресс для обсуждения проблемы квантов. На конгрессе собрались, за исключением П. Эренфеста и чрезмерно молодых еще Н. Бора и П. Дебая, все активно работающие ученые, в частности, встретились в первый и последний раз Эйнштейн и Пуанкаре, но вопросы теории относительности там не обсуждались: все внимание уделили постоянной Планка.
Значимость постоянной Планка можно частично иллюстрировать такими соображениями. Еще математик и механик Адриен Мари Лежандр (1752–1833) доказал замечательное свойство основных уравнений механики: если в уравнениях теории все координаты заменить на импульсы, а переменные времени на переменные энергии (или наоборот), то полученные уравнения имеют физический смысл. При этом необходимо подчеркнуть, что произведения импульса на координату и энергии на время имеют всегда одинаковую размерность — размерность функции действия. Таким образом, сама функция действия, при преобразовании Лежандра, не меняется — является инвариантом (латинское «инварианс» — неизменная).
Мы уже не раз говорили, что для описания поведения физической системы нужно задать в какой-то момент времени ее координаты и скорости или импульсы — это так называемые начальные условия, которые позволяют специализировать для рассматриваемого случая уравнения движения. Если же нужно рассматривать поведение большого числа частиц (их ансамбля), то естественно, в одномерном случае, взять лист бумаги, нарисовать две оси (координату и импульс) и расставить точки — положения и импульсы всех частиц в начальный момент времени, такой рисунок называется фазовой плоскостью. Площадь всех квадратиков на такой фазовой плоскости имеет размерность функции действия, а густота точек покажет начальное распределение ансамбля, и можно будет думать, что с ним произойдет при нагреве, передвижении и т. д. При этом преобразование Лежандра просто-напросто означает, что этот рисунок можно повернуть — переобозначение осей дает второе возможное состояние безо всяких вычислений.
Со времен Максвелла такой метод построения распределений является основным для статистической физики. Но при этом всегда встает вопрос о том, каковы должны быть размеры тех квадратиков, на которые делится эта фазовая плоскость. И вот, во время обсуждений на конгрессе начало становиться яснее, что площадь квадратиков должна быть пропорциональна постоянной Планка.
А затем стало ясно и более глубокое соображение: частицы, находящиеся в одной ячейке фазовой плоскости, можно считать неразличимыми, т. е. приписывать им одинаковые физические параметры. Так еще раз, помимо поглощения абсолютно черного тела, фотоэффекта и удельной теплоемкости, на сцену выходит постоянная Планка, а с ней — квантовая теория.
2. «Старая» квантовая механикаПервые расчеты Бора относились в основном к атому водорода, отчасти к гелию. Теперь нужно было рассмотреть более сложные атомы. Этот период развития теории закончился примерно к 1922 г., и называется он старой или боровской квантовой механикой. Основывалась она главным образом на принципе соответствия, предложенном Бором: если рассматривается такое состояние системы, при котором величиной постоянной Планка можно пренебречь, то все соотношения должны переходить в соотношения классической, т. е. неквантовой, теории.
Отметим, что схожий принцип применим, конечно, и к релятивистским, т. е. соответствующим теории относительности, выражениям: если в них можно устремить скорость света к бесконечности, то они должны перейти в соотношения механики Ньютона или соответствующие выражения электродинамики.
Как писал Макс Борн, «теоретическая физика жила этой идеей последующие десять лет. Искусство угадывания правильных формул, которые отклоняются от классических, но переходят в них, в смысле принципа соответствия было значительно усовершенствовано».
Принцип этот носил, конечно, эвристический характер, но все же помогал найти приближенные выражения и, в частности, помог объяснить структуру периодической системы элементов Менделеева, которая первоначально строилась исключительно на сходстве физикохимических свойств веществ.
Уже рассмотрение спектров атома водорода привело Бора к введению понятия электронных оболочек (или уровней) атома: есть первый уровень, второй, третий и т. д. По старой традиции, они обозначаются не в порядке алфавита: первый — это К-уровень, а потом идут L-уровень, М-уровень и т. д. Номер уровня называется главным квантовым числом и обозначается как п = 1,2,3….. Энергия электрона на уровне убывает обратно пропорционально квадрату главного квантового числа.
Но если электрон вращается по орбите, то у него, как и у планеты, должна быть не только определенная энергия, но и определенный момент импульса, который определяет форму этой орбиты (напомним, что Второй закон Кеплера как раз и соответствует закону сохранения момента импульса планеты). Размерность момента импульса равна размерности функции действия, поэтому естественно предположить, что он пропорционален постоянной Планка, а если учесть его зависимость от кинетической энергии, то получается, что он должен равняться постоянной Планка, умноженной на (n — 1), или быть меньше, т. е. определяться главным квантовым числом. Такое квантовое число называется орбитальным.
В Солнечной планетной системе все орбиты находятся примерно в одной плоскости (плоскость эклиптики). Объясняется это, во-первых, наиболее вероятным происхождением всех планет из одного вращающегося протопланетного облака, а во-вторых, силами притяжения между планетами. В случае атома и при рассмотрении электронных орбит этих ограничений нет, но если атом внесен в магнитное поле, то магнитный момент, индуцируемый током (каждый электрон на орбите может рассматриваться как круговой ток), пропорционален моменту импульса: орбита может быть перпендикулярна силовым линиям поля, может развернуться на 180 градусов, может стать под углом к этим линиям. Но ведь можно потребовать, чтобы при всем при этом энергия в поле оставалась целой, кратной (в соответствии с принципом квантования) какой-то величине. Таким образом возникает еще одно квантовое число, азимутальное, т. е. отсчитывающее угол от азимута, от направления магнитного поля.
Теперь можно начать рассматривать периодическую систему элементов. В первой строке стоят водород (у него один электрон) и гелий с двумя электронами, а поскольку главное квантовое число равно единице, то орбитальное равно нулю, т. е. орбиты электронов сами равномерно вращаются, и у этих уровней нет магнитных моментов (у атома водорода магнитный момент определяется моментом ядра, а у гелия полный момент равен нулю). Принимаем, что таким образом S-уровень (гелиевая оболочка) заполнен и со второй строки начинается заполнение Р-уровня.

