- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд
Шрифт:
Интервал:
Закладка:
Мы часто используем словосочетание «земной шар», но в нашем случае речь идёт только о поверхности Земли, которая в первом приближении является сферой. Чтобы сделать аналогию между поверхностью Земли и Вселенной Эйнштейна корректной, необходимо иметь в виду только поверхность, а не земной шар в целом. Представим себе существ – назовём их плоскатиками, – которые обитают на поверхности сферы. Предположим, что они ни при каких обстоятельствах не могут покинуть эту поверхность: они не могут летать и не могут копать. Давайте также предположим, что единственные сигналы, которыми они обмениваются, распространяются только вдоль поверхности. Например, они могут изучать окружающую среду, испуская и регистрируя поверхностные волны некоторого вида. У этих существ не будет концепции третьего измерения, и они не способны его использовать. Такие существа действительно обитают в замкнутом двумерном мире. Математик бы назвал его 2-сферой, потому что она является двумерной поверхностью.
Мы не плоскатики, живущие в двумерном мире. Однако согласно теории Эйнштейна, мы живём в трёхмерном аналоге сферы. Замкнутое трёхмерное пространство трудно изобразить наглядно, но оно имеет смысл. Математическим термином для обозначения такого пространства является 3-сфера. Подобно плоскатикам мы могли бы обнаружить, что живём в 3-сфере, совершив путешествие в одном направлении и вернувшись в итоге в исходную точку. Согласно теории Эйнштейна, наше реальное пространство является 3-сферой.
Вообще говоря, сфера может иметь любое количество измерений. Простейшим примером является окружность.
Окружность одномерна, как и линия. Если бы мы жили на окружности, то имели бы возможность перемещаться только в одном направлении. Другое название окружности – 1-сфера. Перемещение вдоль окружности – это то же самое, что перемещение вдоль линии, за исключением того, что через некоторое время мы возвращаемся в исходную точку. Чтобы определить круг, начнём с того, что изобразим на двумерной плоскости замкнутую кривую. Если расстояние от центральной точки до каждой точки нашей кривой одно и то же, то наша кривая – окружность. Обратите внимание, что для определения 1-сферы мы начали с двумерной плоскости.
Аналогично можно определить 2-сферу, за исключением того, что теперь мы начнём с трёхмерного пространства. Поверхность является 2-сферой, если каждая её точка находится в трёхмерном пространстве на одном и том же расстоянии от центра. Теперь понятно, как обобщить наше определение на 3-сферу или вообще на сферу любой размерности. Для определения 3-сферы следует перейти в четырёхмерное пространство. Представьте себе пространство, для описания положения точки в котором используются четыре координаты вместо обычных трёх. Теперь просто выберите все точки, находящиеся на одном и том же расстоянии от начала координат. Все они лежат на 3-сфере.
Подобно плоскатикам, живущим на 2-сфере, которым неинтересно изучать что-либо, кроме поверхности сферы, геометру, изучающему 3-сферу, нет никакого дела до четырёхмерного пространства, в которое вложена 3-сфера. Мы можем выбросить из головы четвёртое измерение и сосредоточиться только на 3-сфере.
Космология Эйнштейна описывает пространство, которое в первом приближении имеет форму 3-сферы, но, как и земная поверхность, не обладает совершенной сферической формой. В общей теории относительности пространство не является жёстко зафиксированным, оно больше похоже на поверхность упругого воздушного, а не жёсткого стального шара. Представьте себе Вселенную в виде поверхности такого гигантского деформируемого воздушного шарика. Плоскатики живут на резиновой поверхности и фиксируют только сигналы, распространяющиеся вдоль этой поверхности. Они ничего не знают о других пространственных измерениях, не имеют понятия о внутренностях шара, внешней воздушной оболочке. Их пространство является гибким как резина, и расстояние между двумя точками в таком пространстве может со временем изменяться.
На этом воздушном шарике нарисованы галактики, более или менее равномерно покрывающие его поверхность. Если воздушный шарик надувается, галактики движутся друг от друга. Если он сдувается, галактик сближаются. Все это довольно легко себе представить. Трудность возникает при переходе от двух измерений к трём. Теория Эйнштейна описывает мир, в котором пространство является гибким и растяжимым и имеет форму, близкую к 3-сфере.
А теперь добавим гравитационное притяжение. Согласно теории гравитации (как Ньютона, так и Эйнштейна), каждый объект во Вселенной притягивает любой другой объект с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. В отличие от электрических сил, которые бывают как притягивающими, так и отталкивающими, сила гравитации – всегда сила притяжения. Эффект гравитационного притяжения пытается собрать все галактики вместе и сжать Вселенную. На поверхности воздушного шарика роль гравитации играет упругая сила натяжения его поверхности, стремящаяся сжать шарик. Если вы хотите увидеть эффект этого натяжения, просто воткните в шарик булавку…
Если никакая сила не противодействует гравитационному притяжению, галактики будут с ускорением двигаться друг к другу, и вся Вселенная обрушится внутрь себя, как проткнутый булавкой воздушный шарик. Но в 1917 году Вселенная выглядела для наблюдателей статической, неизменной. Астрономы, как и все обычные люди, смотрели на небо и не видели никаких крупномасштабных движений далёких звёзд (кроме небольших случайно направленных собственных движений). Эйнштейн понимал, что статическая Вселенная невозможна, если гравитационные силы являются только силами притяжения. Статическая Вселенная подобна неподвижно парящему над поверхностью земли камню. Если бросить камень вертикально вверх, вы увидите, как он сначала поднимается, а затем падает. Вы можете даже уловить тот момент, когда камень останавливается в верхней точке, меняя направление движения. Но вот что камень не может сделать, так это вечно висеть на фиксированной высоте, если нет никакой другой силы, действующей на камень, кроме силы притяжения Земли. Точно таким же образом статическая Вселенная бросает вызов закону всемирного тяготения.
Эйнштейн оказался перед необходимостью модификации своей теории, которая обеспечила бы компенсирующую силу. В случае воздушного шарика такой силой является давление воздуха, противодействующего изнутри натяжению резиновой оболочки. Но реальная Вселенная не наполнена воздухом. Реальная Вселенная представляет собой только поверхность. Поэтому Эйнштейн предположил, что должна существовать какая-то отталкивающая сила, противодействующая гравитации. Может ли общая теория относительности скрывать в своих уравнениях подобную силу?
Внимательно изучив уравнения теории относительности, Эйнштейн обнаружил в них неоднозначность: уравнения могут быть изменены без нарушения их математической согласованности путём добавления ещё одного члена. Роль этого дополнительного члена весьма неожиданна: он добавляет к обычной силе притяжения, которая ослабевает обратно пропорционально квадрату расстояния, ещё одну силу – силу отталкивания, которая с ростом расстояния увеличивается. Величина новой силы определяется новой физической константой, которую Эйнштейн обозначил греческой буквой λ (лямбда). С тех пор эта константа называется космологической постоянной и по-прежнему обозначается буквой λ.
Внимание Эйнштейна привлекло в особенности то, что если выбрать в качестве λ положительное число, то новый член будет соответствовать силе всемирного отталкивания, увеличивающейся пропорционально расстоянию между телами. Эйнштейн понял, что лямбда-член может играть роль той самой отталкивающей силы, действующей против силы всемирного тяготения, которая способна обеспечить равновесие Вселенной. Равновесия галактик можно добиться соответствующим выбором константы λ. Принцип выбора прост: чем больше расстояние между галактиками, тем меньше должно быть значение λ, чтобы удерживать их в равновесии. Несмотря на то что с математической точки зрения константа может быть любой, физически её очень легко определить, зная среднее расстояние между галактиками. В то самое время, когда Хаббл был занят измерением расстояний между галактиками, Эйнштейн был уверен, что открыл секрет Вселенной. Это был мир, балансирующий на двух силах: притяжения и отталкивания.
Но у этой теории есть ряд противоречий. Теоретически Вселенная, построенная Эйнштейном, была нестабильной. Она находилась в состоянии равновесия, но это равновесие было неустойчивым. Разницу между устойчивым и неустойчивым равновесием проще всего понять на примере маятника. Когда маятник висит вертикально, а его груз находится в самой низкой точке, маятник пребывает в состоянии устойчивого равновесия. Это означает, что если вы незначительно отклоните его от точки равновесия, он вернётся к своему первоначальному положению.

