- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
ТЕМНАЯ МИССИЯ СЕКРЕТНАЯ ИСТОРИЯ NASA - Ричард Хогланд
Шрифт:
Интервал:
Закладка:
Проверяемая теория
Настоящий научный метод — это то, чего, к сожалению, в современном мире люди просто не понимают, причем не понимают даже многие ученые. История науки изобилует яростными дискуссиями, выраставшими в настоящие войны эгоизма и личных интересов. Однако метод как таковой должен защищать нас от того, чтобы ученые и их теории не стали новой религией и ее священниками, он гарантирует, что, если модель не соответствует новым данным, ее отвергают, независимо от того, насколько это задевает чьи- то интересы. Увы, это действует не часто.
Хогленд сразу хотел отделить свою концепцию гиперпространственной физики от более ранних моделей одним особым способом — прогнозированием.
От того, будут ли его новые идеи подтверждены или опровергнуты, зависит, получит ли поддержку его современная версия революционных идей Максвелла. Для этого любая верная научная модель должна давать прогнозы, которые можно проверить опытным путем. К счастью, некоторые тесты гиперпространственной модели предлагались самими наблюдениями. В итоге Хогленд остановился на четырех дополнительных ключевых прогнозах, которые могли бы определить, содержится ли в Сидонии «тетраэдральная физика» и может ли быть опровергнута итоговая «гиперпространственная модель». Все эти тесты неизменно имели в основе один, в некотором роде необычный, источник.
Вращательный момент
Сначала Хогленд сосредоточился на аномальном тепловом излучении планет, которое он наблюдал вместе с Тораном. Поскольку в трехмерном пространстве по законам термодинамики Кельвина и Гиббса вся энергия в конце концов «вырождается» в беспорядочное движение, а затем «энергия деформации» эфира (вакуума) высвобождается внутри материального объекта, то даже если это сначала проявляется в когерентной форме, в конце концов она деградирует в простое беспорядочное тепло, которое в конечном счете излучается в пространство в виде инфракрасного избытка. В итоге любая энергия, из какого бы источника она ни происходила, выглядит одинаково.
Поэтому Хогленд сосредоточил свое внимание на изначальных астрофизических условиях, при которых этот «максвелловский космический потенциал» может высвобождаться внутри планеты или звезды. Он хотел спрогнозировать определенные признаки, которые однозначно указывали бы на источник излучения энергии как гиперпространственный, противоположный «обычному» трехмерному, эффект.
При изучении аномального инфракрасного излучения сразу же становится понятно: инфракрасный избыток гигантских планет очень хорошо коррелирует с одним общим для всех них параметром — их общей системой «вращательного момента».
В классической физике масса тела и скорость, с которой оно вращается, определяют «вращательный момент» объекта. В гиперпространственной же модели все выглядит немного сложнее, поскольку объекты, находящиеся на расстоянии друг от друга в обычном мире, в четырехмерном мире на самом деле соединены. Таким образом, в гиперпространственной модели что- то всегда добавляется к орбитальному моменту гравитационно привязанных спутников объекта — спутников относительно планет, планет относительно солнц или звезды–компаньона в системах двойных звезд.
В этой связи, как доказывал Хогленд и как следовало из его «бессмысленных» наблюдений математики Сидонии, общий вращательный момент системы был ключом к пониманию того, как на самом деле все действует в нашем трехмерном мире. Это полностью противоречит существующей сегодня теории полей и электромагнетизма, которая рассматривает массу звезды или планеты как наиболее важную характеристику, обуславливающую астрофизическое поведение. Поскольку в основном физики работают с теорией Максвелла в версии Хевисайда, наиболее значимая «сила», которую они могут наблюдать, — это сила тяготения. Поскольку сила тяготения зависит от массы, современные физики полагают, что масса является единственным наиболее значительным аспектом в астрофизическом взаимодействии.
Однако при измерении вращательного момента всей Солнечной системы вас ожидает сюрприз.
Выясняется, что Юпитер, имеющий менее 1% массы в Солнечной системе, каким- то образом обладает 60% вращательного момента, в то время как Солнце, обладающее 99% массы, имеет только 1% вращательного момента. Если общепринятые взгляды на Солнечную систему верны, то на самом деле вращательный момент должен быть распределен в зависимости от массы. В реальности же все происходит «с точностью до наоборот».
Такое отличие теории от реальности пытались объяснить при помощи различных идей, в том числе и того, что Солнце каким- то загадочным способом «передает» свой вращательный момент планетам, однако в таких версиях есть целый ряд вопросов, разрешить которые теоретики мироздания пока не могут.
Когда Хогленд начал изучать то, какую роль может играть вращательный момент в его развивающейся теории, он провел одну важную аналогию — общая связь, объединяющая все объекты, на которых распространяется действие «воплощенной в Сидонии тетраэдральной модели», от планет до Солнца, в своей основе, вероятно, имеет взаимосвязь между вращательным моментом и магнитным полем. До принятия этой сложной «самовозбуждающейся динамотеории» (с внутренней циркуляцией проводящих «жидкостей» как механизмом общего планетарного и звездного магнетизма) предлагалась другая, совершенно эмпирическая теория — удивительно простая связь наблюдаемого общего вращательного момента объекта и проистекающего из него магнитного диполя.
Названная «гипотезой Шустера» (по имени сэра Артура Шустера (1851 — 1934), первым отметившего эту взаимосвязь; его эмпирическое открытие и даже само имя необъяснимым образом исчезли из всей литературы НАСА по планетарному магнетизму), эта теория успешно предсказала силу магнитного поля (Блэкетт 1947, Уорик 1971) Земли, Солнца и огромное поле Юпитера (в 20000 раз больше земного дипольного момента). Прогноз Шустера, сделанный за 60 лет до того, как космические аппараты «Пионер-10» и 11 в 1973–1974 годах подтвердили его (Уорик 1976), в 1971 году заставили Уорика так прокомментировать предсказательную силу «гипотезы Шустера: «Динамо — теория еще не дала верного прогноза ни об одном космическом поле. Ее использование сегодня основывается на предположении, что ни одна другая теория не является более соответствующей наблюдениям».
И в самом деле, после того как «Маринер-10» обнаружил магнитное поле вокруг Меркурия, что не только соответствовало гипотезе Шустера, но и прямо противоречило динамо–теории, даже Карл Саган признал, что существовала необходимость для серьезного пересмотра научного взгляда на планетарный магнетизм.
Взяв за основу предположение Шустера, сделанное в 1912 году, Хогленд и Торан графически нанесли современные параметры вращательного момента и наблюдаемого магнитного дипольного момента (данные взяты для всех планетарных объектов, которые посещались космическими аппаратами с магнитометрами) и обнаружили, что гипотеза Шустера получила подтверждение — за исключением Марса (который лишился магнитного поля в результате недавней катастрофы, речь о которой пойдет позднее) и Урана (см. ниже). Очевидно, что динамо — теория не дала ни одного верного прогноза планетарного магнитного поля, а теорема Шустера оказалась верной почти во всех случаях.
Уран, являющийся единственным исключением из теоремы Шустера, на самом деле можно считать исключением, подтверждающим правило. Уран имеет почти такой же период вращения, как и Нептун, и по определению должен иметь магнитное поле почти такой же силы. Однако сила магнитного поля Нептуна вдвое меньше земной, в то время как у Урана оно равно двум третям земного. Если теорема Шустера верна, магнитосферы двух планет должны иметь почти одинаковую интенсивность. В реальности же они имеют соотношение около двух к одному.
Уран, однако, является исключением и по многим другим причинам — угол его наклона составляет почти 90° к вертикали Солнца, что указывает на то, что в недавнем прошлом на нем произошло смещение полюсов, которое и стало причиной несхожести его характеристик с другими планетами. Если это произошло в недавнем геологическом прошлом, после этого логически должен следовать период несоответствия теореме Шустера. Учитывая, что также имелся гиперпространственный фактор (в соответствии с опытами по сферической прецессии ДеПалмы), который мог влиять на настоящее состояние Урана, и поскольку наблюдения Шустера срабатывали в случаях с другими планетами, представляется вероятным, что у исключительности Урана имеется еще одна не до конца понятая причина. Но, очевидно, что если теорема Шустера верна в семи из девяти случаев, а динамотеория — ни в одном, то первая является более предпочтительной.

