- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Жизнь науки - С. Капица
Шрифт:
Интервал:
Закладка:
вычных случаях линейных систем, где, конечно, применимы более простые, прямые методы. Важному вопросу о существовании периодических решений уделено соответственное внимание. Детально изложены вопросы, относящиеся к проблемам с «малой» нелинейностью, проблемам, имею-* щим в расчетном смысле чрезвычайно важное значение. Подробно разобран вопрос об устойчивости.
Все эти проблемы рассмотрены применительно к наиболее простому случаю системы с одной степенью свободы без внешней силы (так называемые автономные системы). То же относится и к разобранным в конце книги конкретным задачам и примерам. Эти вопросы изложены с большей полнотой; но читатель не найдет в книге ни задач, связанных с воздействием внешней силы, ни задач, относящихся к системам с несколькими степенями свободы и к системам с распределенными параметрами. Между тем все эти проблемы несомненно важны и интересны. Однако, если принять во внимание, как велик объем всего материала, относящегося к нелинейным колебаниям, с одной стороны, и основную цель книги — ввести читателя в круг общих идей и методов — с другой, то выбор авторов станет понятным. Автономные системы с одной степенью свободы — наиболее простые системы, и они в то же время являются теми элементами, которые лежат в известном смысле в основе всех более сложных систем.
Теоретический аппарат, необходимый для рассмотрения этих последних, базируется на тех общих положениях, которые изложены здесь р представляют собой его дальнейшее развитие. Таким образом, хотя в настоящей книге разобран сравнительно узкий цикл вопросов, по существу она является введением в общую теорию нелинейных колебаний.
Я не сомневаюсь, что свежая и оригинальная книга, предлагаемая вниманию читателя, будет ценным вкладом в нашу литературу по колебаниям.
1935 г.
ЛАНДАУ
(1908-1968)Лев Давидович Ландау родился в Баку в семье инженера-нефтяпика; мать ученого была врачом. Ландау кончил школу тринадцати дет, высшую математику он изучил самостоятельно; впоследствии он говорил, что не помнит себя пе умеющим интегрировать. В Бакинском университете Ландау учился сразу на двух факультетах — физико-математическом и химическом. В 1924 г. он перешел в Ленинградский университет, который окончил в 1927 г. Годом раньше он публикует свои первые работы по квантовой механике. В 1929 г. Ландау на полтора года уезжает за границу. Он работает в Англии, Швейцарии, а затем в Дании. Пребывание в Копенгагене оказывает на него наибольшее влияние: Ландау всегда считал себя учеником Бора. Несколько лет Ландау работал в Ленинградском физико-техническом институте, а затем —во вновь созданном Украинском физико-техническом институте в Харькове; там же начала складываться его школа физиков-теоретиков.
В 1937 г Ландау переезжает в Москву, где возглавляет отдел теоретической физики в Институте физических проблем, который основал П. Л. Капица. В этом институте Ландау плодотворно работает до трагической автомобильной катастрофы в январе 1962 г., от последствий которой он так и не оправился.
Работы Ландау посвящены почти всем разделам физикп; но, наверное, главным его делом было развитие квантовой теории твердого тела и создание теории квантовых жидкостей: в первую очередь теории явления сверхтекучестп, открытого в 1938 г. П. Л. Капица. Эти исследования Ландау отмечены Нобелевской премией 1962 г.
Большое влияние на развитие физики и особенно на формирование обширной школы теоретической физики в Советском Союзе оказал многотомный «Курс теоретической физики», написанный совместно с Е, М. Лифшицем; этот курс удостоен Ленинской премии 1962 года. Мы приводим введение, с которого начинается первый том — «Механика» (1940), первоначально написанный вместе с Л. Пятигорским.
КУРС ТЕОРЕТИЧЕСКОЙ ФИЗИКИ. МЕХАНИКАФизика, как известно, состоит, собственно говоря, из двух наук: физики экспериментальной и физики теоретпческой. Громадное количество известных нам физических законов может быть выведено из очень небольшого числа весьма общих соотношений; однако такое выведение, так же как и установление самих основных законов, требует своеобразных методов и поэтому составляет задачу особой науки — теоретической физики.
Для построения своих выводов и заключений теоретическая физика пользуется приемами и методами математики. Однако от последней она резко отличается непосредственной связью с результатами эксперимента. Не говоря уже о том, что установление общих законов возможно только на основе экспериментальных данных, даже нахождение следствий из общих законов нуждается в предварительном экспериментальном изучении явлений. Без такого изучения часто невозможно установить, какие из громадного числа участвующих факторов существенны, а какими мож^ но пренебречь. После того как получены уравнения, учитывающие только существенные факторы, задача теоретической физики, собственно говоря, в основном заканчивается. Дальнейшее применение полученных уравнений к более или менее сложным конкретным случаям является уже скорее предметом математики и изучается отделом математики, носящим название математической физики.
Теоретическая физика ставит себе целыо нахождение физических законов, т.е. установление зависимости между физическими величинами. Определение же численных значений физических величин, вообще говоря, в ее задачи не входит. Эксперимент справляется с этим кругом вопросов относительно настолько легко, что в огромном большинстве случаев отсутствует самая необходимость подобных вычислений, которые к тому же потребовали бы громадной затраты времени и труда. Исключение составляют простейшие случаи, когда численные значения величин непосредственно вытекают из теории.
Следует отметить, что поскольку задача теории состоит всегда в установлении зависимостей между различными величинами, характеризующими данное явление, теория явления может быть построена только в том случае, когда в природе такая связь действительно существует. Сплошь и рядом, однако, между представляющими интерес величинами никакой связи вовсе не существует, т.е. эти величины могут встречаться в природе в самых различных комбинациях. Таким образом, отсутствие теории какого-либо явления далеко не всегда означает, что оно не поддается объяснению. Отсутствие закономерности при этом так же может вытекать из общих законов, как в других случаях сами закономерности.
Громадную роль в теоретической физике играет приближенное рассмотрение. Прежде всего совершенно точные законы природы нам еще неизвестны. Все известные нам общие законы являются приближенными, хотя в громадном большинстве случаев даваемая ими точность является весьма высокой. Более того, требование абсолютной точности к физическим законам и не предъявляется. Достаточно, если существует какая-то заранее установленная область явлений, в которой точность данного закона удовлетворяет поставленной задаче. Так, мы спокойно применяем ньютоновскую механику к движению снаряда, хотя нам известно не только то, что эта механика не является абсолютно точной, но и то, что в нашем распоряжении имеется значительно более точная релятивистская механика.
Благодаря этому в теоретической физике рядом с более точными теориями прекрасно уживаются теории, неточность которых давно установлена,— поскольку они вполне сохраняют свою ценность для определенной области явлений (такие теории обычно называются классическими). Всякая логически замкнутая теория, верность которой была с известной степенью точности экспериментально доказана, никогда не теряет своего значения, и всякая более точная последующая теория охватывает ее как приближенный результат, справедливый в некоторых частных случаях. Это, конечно, не относится к теориям, страдающим внутренними противоречиями, которые всегда имеют значение только одного из этапов развития теоретической физики.
Таким образом, приближения играют очень важную роль в общих физических теориях. Не менее велика, однако, их роль и при выводе из общих теорий конкретных физических законов. Слишком точные вычисления с учетом несущественных факторов не только бесплодны и излишне усложняют результат расчета, но могут даже привести к тому, что существующие в данном явлении закономерности вообще выпадут из рассмотрения. Дело в том, что приближенным может оказаться не только данный конкретный вид закона, но и само существование функциональной связи между характеризующими данное явление величинами, и за пределами данной точности эти величины могут встречаться в произвольных комбинациях.
Определение степени приближения, с которой данное явление должно рассматриваться, чрезвычайно существенно при его теоретическом исследовании. Особенно грубой ошибкой является тщательное вычисление с учетом всевозможных мелких поправок и применением слишком точных общих теорий в случаях, когда одновременно с этим пренебрегают гораздо большими величинами.