- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Трехмерный мир. Евклид. Геометрия - Josep Carrera
Шрифт:
Интервал:
Закладка:
Книга I, предложение 37. Треугольники, находящиеся на одном и том же основании и между одними и теми же прямыми, равны между собой.
РИС. 5
Рисунок 5 иллюстрирует предложения 35 и 26 первой книги.
Евклид говорит, что параллелограммы ВС и IH обладают одинаковой площадью. Сегодня это утверждение кажется нам очевидным. У фигур одинаковое основание и одинаковая высота, а площадь получается путем умножения этих двух величин (хотя это тоже требует доказательства). Однако древнегреческая геометрия оперирует размерами, у которых вследствие несоизмеримости нет длины. Из-за этого один или оба отрезка не могут быть измерены (этот вопрос мы рассмотрим подробнее в главе 5). Следовательно, необходимо найти способ доказать равенство этих двух площадей. Евклид использовал общее понятие 1. Если бы ему удалось доказать, что площади параллелограммов ВС и AJ с общим основанием равны и что площадь второго равна площади параллелограмма IH с которым у него одинаковое основание, то и параллелограммы ВС и IH были бы равны.
Точка обозначает конец линии или ее начало?
Кто знает. Никто.
Мо-цзы (479-400 до н. э.)
Начнем с первого вопроса. Евклид анализирует все фигуры (то есть пользуется методом китайского танграма) и применяет общие понятия 2 и 3. Треугольники BAI и DCJ состоят из белой фигуры и серой, которая является общей для них обоих. Если мы отнимем у них этот общий кусок («от равных отнимем равное»), то получится, что площади четырехугольников BAMD и IMCJ равны, хотя они и имеют разную форму.
Теперь добавим к этим четырехугольникам треугольник АМС (темно-серый), который станет их общей частью. Поскольку мы прибавили «к равным равное», получается, что площади параллелограммов ВС и AJ с общим основанием АС равны. В чем разница между случаем, который мы только что доказали, и общим утверждением предложений 35 и 36 первой книги? Она состоит в том, что, как мы уже видели, в этом случае речь идет не просто о равных основаниях, а об одном и том же основании (в паре ВС и AJ — отрезок АС, в паре AJ и IH — отрезок IJ).
В этом доказательстве Евклид, возможно, использовал предложение 4 из первой книги (критерий равенства по двум сторонам и углу), которое устанавливает равенство треугольников BAI и DCJ. Для этого ему были необходимы некоторые свойства, вытекающие из постулата о параллельных (см., в частности, предложения 34 и 29 первой книги). После того как Евклид пришел к этому результату, он мог использовать метод танграма, при котором части не равны друг другу, но имеют одинаковую площадь. В этом и состоял принцип обобщенного танграма, который Евклид использовал с большим мастерством. Предложение 37 первой книги является простым выводом из предыдущих, поскольку сводится к доказательству того, что площадь треугольников равна половине площади параллелограмма (см. рисунок 6).
Разум не сосуд, который надо наполнить, а факел, который надо зажечь.
Плутарх
Евклид, как до него и другие древнегреческие математики, вывел геометрию на новый уровень и придал ей большую ясность, обобщив простые и очевидные результаты. В данном случае он установил, правда не объясняя это отдельно, а сразу используя в своих доказательствах, что площади можно высчитывать при помощи различных по форме фигур (параллелограммов и треугольников).
РИС. 6
Еще одно геометрическое понятие, позволившее Евклиду использовать обобщенный метод танграма,— гномон. Геродот так говорит о нем во второй книге «Истории»:
«Сесострис разделил землю между всеми жителями и дал каждому по квадратному участку равной величины. От этого царь стал получать доходы, повелев взимать ежегодно поземельную подать.
Если река отрывала у кого-нибудь часть его участка, то владелец мог прийти и объявить царю о случившемся. А царь посылал людей удостовериться в этом и измерить, насколько уменьшился участок, для того чтобы владелец уплачивал подать соразмерно величине оставшегося надела. Мне думается, что при этом-то и было изобретено землемерное искусство и затем перенесено в Элладу.
Ведь «полос» и «гномон», так же как и деление дня на 12 частей, эллины заимствовали от вавилонян».
РИС. 7
Евклид дал определение гномону в книге II, хотя уже в книге I установил характеристики, благодаря которым он имеет такое большое значение.
Книга II, определение 2. Во всякой образованной параллельными линиями площади каждый из расположенных на ее диаметре параллелограммов вместе с двумя дополнениями будем называть гномоном.
Его интересная особенность:
Книга I, предложение 43. Во всяком параллелограмме дополнения расположенных по диаметру параллелограммов равны между собой.
Как видно на рисунке 7, гномоном, согласно определению 2 книги II, является серая фигура, состоящая из четырех частей: двух параллелограммов IH, GC и двух треугольников IGD и JDG, явно равных. Треугольники, на которые параллелограмм делится диагональю, то есть белые и темно-серые, равны по признаку равенства треугольников, то есть применяется общее понятие 3. Следовательно, фигуры разной формы (которые нельзя наложить одну на другую) равновеликие, в этом и заключается обобщенный метод танграма.
ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ПИФАГОРАИгра в танграм позволила Евклиду дать очень изящное и в то же время очень оригинальное доказательство теоремы Пифагора.
Доказательство Евклида из предложения 47 книги I.
Теорема Пифагора. В прямоугольном треугольнике ΔАВС квадрат на гипотенузе ВС равен сумме квадратов, построенных на катетах АВ и АС.
Как видно на рисунке 8, из вершины А проводится прямая, перпендикулярная гипотенузе ВС, до пересечения со стороной Н1 квадрата В1. Мы получаем прямоугольники CJ и В]. Необходимо доказать, что прямоугольник С] равен квадрату AD и что прямоугольник BJ равен квадрату AG. Евклид строит треугольники AACI и ADCB. Они равны, как можно легко убедиться, поскольку имеют равные стороны и угол между ними (общее понятие 2). Итак, у треугольника AACI и прямоугольника CJ общая сторона СI, а его вершина А находится на той же параллельной прямой, AJ, на которой у прямоугольника CJ расположена сторона KJ, противоположная стороне CI. Следовательно, площадь прямоугольника CJ в два раза больше площади треугольника ΔACI. Таким же образом, площадь квадрата AD в два раза больше площади треугольника ADCB. Следовательно, площадь квадрата AD равна площади прямоугольника IK (первое равенство, которое мы должны были доказать). Аналогично, площадь квадрата AG равна площади прямоугольника BJ (второе равенство, которое мы хотели доказать). Следовательно, согласно общему понятию 2, теорема доказана.
ОБОБЩЕННЫЙ МЕТОД ТАНГРАМА В КНИГЕ IIТермин «геометрическая алгебра» в свое время вызывал споры, но в любом случае он очень удобен из-за своей лаконичности. Дисциплина заключается в том, чтобы выразить площади прямоугольников и квадратов в числовой форме. Ее пионерами были Диофант Александрийский и арабские математики. Например, знаменитое дистрибутивное свойство умножения, представленное в алгебраическом виде как а (b + с + d +...) = (a x b) + (a x c) + + (а х d) + ..., в геометрии Евклида будет записано так:
Книга II, предложение 1.
Если имеются две прямые и одна из них рассечена на сколько угодно отрезков, то прямоугольнику заключающийся между этими двумя прямыми у равен вместе взятым прямоугольникам, заключенным между нерассеченной прямой и каждым из отрезков (см. рисунок 9).
РИС. 8
РИС. 9
Аналогичным образом можно выразить и другие алгебраические равенства, например (а ± b)² = а² + b² ± 2aby (а + b) х (а - b) = а² - b². Рассмотрим только (а + b) х (а - b) = а² - b². Будем исходить из альтернативной формулировки предложения 5 книги 2. Возьмем фигуру, как на рисунке 10. Разобьем прямоугольник HJ. В первую очередь установим равновеликость прямоугольников FN и NB, используя свойства гномона. Прямоугольник NB равновелик прямоугольнику BI по построению, так как DB = DF = а, BJ = FH = b, DJ = а + b, JI = DH = а - b. Получается, что прямоугольник HJ состоит из квадрата KD (а²), поскольку прямоугольники GJ и FN равны, но остается квадрат MG (b²).
РИС. 10
РИС. 11
Второе применение танграма позволяет доказать, что многосторонние фигуры могут трансформироваться в равновеликий квадрат. Для доказательства мы будем постепенно уменьшать количество сторон многосторонней фигуры, сведя ее к треугольнику. Возьмем многостороннюю фигуру ABCDEFG (см. рисунок 11). Соединим две ее любые вершины, между которыми есть хотя бы одна другая вершина, например D и F. Проведем параллельную прямую через вершину Е. Продлим сторону CD, пока она не пересечет эту параллельную в точке I. Соединим точки I и F. Треугольники IFD и EFD равновеликие (книга I, предложение 35). Таким образом, фигуры ABCDEFG и ABCIFG также равновеликие, но у первой на одну сторону больше, чем у второй. Повторив эту процедуру, мы получим прямоугольник, равновеликий заданному многоугольнику. Следовательно, всякую многоугольную фигуру можно свести к треугольнику.

