- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер
Шрифт:
Интервал:
Закладка:
Но вполне возможно, что тема сознания имеет гораздо больше аспектов. Может быть и так, что каким-то образом наше сознание действительно зависит от нашего наследия и от миллионов лет эволюции, лежащих у нас за спиной. Меня не покидает ощущение, что в самой эволюции, в ее явном «нащупывании» пути к какой-то будущей цели есть что-то загадочное и непостижимое. Кажется, что все организовано несколько лучше, чем оно «должно было быть» на основе слепой эволюции и естественного отбора. Вполне возможно, однако, что внешние проявления здесь обманчивы. Возможно, это как-то связано с тем способом, каким действуют физические законы, что позволяет естественному отбору протекать гораздо эффективнее, чем в случае, если бы этот процесс управлялся произвольными законами. Возникающее в результате явно «интеллектуальное нащупывание» — это отдельная интересная тема, к которой я вернусь несколько позже.
Неалгоритмическая природа математической интуиции
Как я уже указывал ранее, моя уверенность в том, что сознание способно влиять на характер суждений об истинности неалгоритмическим путем, опирается главным образом на результаты теоремы Геделя. Если мы видим, что сознание действует неалгоритмически при формулировании математических суждений, где вычисления и строгие доказательства являются непременным требованием, то уж наверняка нас нетрудно будет убедить и в том, что эта неалгоритмическая составляющая могла бы являться решающей и для роли сознания при более общих (не связанных с математикой) обстоятельствах.
Вспомним доводы, приведенные в главе 4 в рамках доказательства теоремы Геделя и устанавливающие ее применимость к решению вопроса о вычислимости. Там было показано, что какой бы (достаточно сложный) алгоритм ни использовал математик для установления математической истины или, что то же самое[215], какую бы формальную систему он[216] ни принял для задания своего критерия истинности — всегда найдутся математические суждения, подобные сформулированному Геделем утверждению Pk(k) для системы (см. Глава 4. «Теорема Геделя»), на которые его алгоритм не сможет дать ответа. Если ум математика работает полностью алгоритмически, то алгоритм (или формальная система), которые он обычно использует для построения своих суждений, оказываются не в состоянии справиться с утверждением Pk(k), полученным с помощью его собственного алгоритма. Тем не менее, мы можем (в принципе) понять, что Pk(k) на самом деле истинно! Этот факт, по всей видимости, должен был бы указать ему на противоречие, поскольку он, как и мы, не может не заметить его. А это, в свою очередь, может свидетельствовать о неалгоритмическом характере его рассуждений!
В этом заключается суть довода, предложенного Лукасом [1961] в поддержку точки зрения, согласно которой деятельность мозга не может быть полностью алгоритмической, против которого, однако, время от времени выдвигались различные контрдоводы (см., например, Бенасерраф [1967], Гуд [1969], Льюис [1969, 1989], Хофштадтер [1981], Бови [1982]). В связи с этой дискуссией я должен подчеркнуть, что термины «алгоритм» и «алгоритмический» относятся к чему угодно, что может быть (достоверно) смоделировано на компьютере общего назначения. Сюда включается, конечно, как «параллельная обработка», так и «нейросети» (или «машины с переменной структурой связей»), «эвристика», «обучение» (где всегда заранее задается определенный фиксированный шаблон, по которому машина должна обучаться), а также взаимодействие с внешним миром (которое может моделироваться посредством входной ленты машины Тьюринга). Наиболее серьезным из этих контраргументов является следующий: чтобы действительно убедиться в истинности утверждения Pk(k)нужно знать, какой именно алгоритм использует математик, и при этом быть уверенным в правомерности его использования в качестве средства достижения математической истины.
Если в голове у математика выполняется очень сложный алгоритм, то у нас не будет возможности узнать, что он из себя представляет, и поэтому мы не сможем сконструировать для него утверждение геделевского типа, не говоря уже об уверенности в обоснованности его применения.
Такого типа возражения часто выдвигаются против утверждений подобных тому, которое я привел в начале этого раздела, а именно, что теорема Геделя свидетельствует о неалгоритмическом характере наших математических суждений. Но сам я не нахожу это возражение слишком убедительным. Предположим на мгновение, что способы, которыми математики формируют осознанные суждения о математической истине действительно являются алгоритмическими. Попробуем, используя теорему Геделя, доказать абсурдность этого утверждения от противного (reductio ad absurdum!).
Прежде всего мы должны рассмотреть возможность того, что разные математики используют неэквивалентные алгоритмы для суждения об истинности того или иного утверждения. Однако — и это одно из наиболее поразительных свойств математики (может быть, почти единственной в этом отношении среди всех прочих наук) — истинность математических утверждений может быть установлена посредством абстрактных рассуждений! Математические рассуждения, которые убеждают одного математика, с необходимостью убедят и другого (при условии, что в них нет ошибок и суть нигде не упущена). Это относится и к утверждениям типа геделевского. Если первый математик готов согласиться с тем, что все аксиомы и операции некоторой формальной системы всегда приводят только к истинным утверждениям, то он также должен быть готов принять в качестве истинного и соответствующее этой системе геделевское утверждение. Точно то же самое произойдет и со вторым математиком. Таким образом, рассуждения, устанавливающие математическую истину, являются передаваемыми[217].
Отсюда следует, что мы, говоря об алгоритмах, имеем в виду не какие-то неясные разномастные построения, которые, возможно, рождаются и бродят в голове каждого отдельного математика, а одну универсально применяемую формальную систему, которая эквивалентна всем возможным алгоритмам, использующимся математиками для суждений о математической истине. Однако мы никак не можем знать, является ли эта гипотетическая «универсальная» система той, которая используется математиками для установления истинности. Ибо в этом случае мы могли бы построить для нее геделевское утверждение, и знали бы наверняка, что оно математически истинно. Следовательно, мы приходим к заключению, что алгоритм, который математики используют для определения математической истины, настолько сложен или невразумителен, что даже правомерность eго применения навсегда останется для нас под вопросом.
Но это бросает вызов самой сущности математики! Основополагающим принципом всего нашего математического наследия и образования является непоколебимая решимость не склоняться перед авторитетом каких-то неясных правил, понять которые мы не надеемся. Мы должны видеть — по крайней мере, в принципе — что каждый этап рассуждений может быть сведен к чему-то простому и очевидному. Математическая истина не есть некая устрашающе сложная догма, обоснованность которой находится вне границ нашего понимания — она строится из подобных простых и очевидных составляющих; и когда они становятся ясны и понятны нам, с их истинностью соглашаются все без исключения.
С моей точки зрения, получить такое явное reductio ad absurdum (без применения настоящего математического доказательства) мы даже и мечтать не могли! Основная идея должно быть теперь ясна. Математическая истина — это не то, что мы устанавливаем просто за счет использования алгоритма. Кроме того, я полагаю, что наше сознание — это решающая составляющая в нашем понимании математической истины. Мы должны «видеть» истинность математических рассуждений, чтобы убедиться в их обоснованности. Это «ви́дение» — самая суть сознания. Оно должно присутствовать везде, где мы непосредственно постигаем математическую истину. Когда мы убеждаемся в справедливости теоремы Геделя, мы не только «видим» ее, но еще и устанавливаем неалгоритмичность природы самого процесса «ви́дения».

