Теория игр. Искусство стратегического мышления в бизнесе и жизни - Авинаш Диксит
Шрифт:
Интервал:
Закладка:
С другой стороны, издатель стремится максимально увеличить свою прибыль. Прибыль – это доход за вычетом издержек. Это означает, что издатель заинтересован скорее в установлении более высокой цены, а не в увеличении совокупного дохода. Если бы издатель сначала установил такую цену, которая обеспечила бы максимальный доход, а затем немного повысил ее, совокупный доход почти не изменился бы, но это сократило бы объем продаж, а значит, и издержки. Что касается нашей книги, мы заранее знали об этой проблеме и добились включения пункта о прейскурантной цене в контракт. Не стоит благодарности. И спасибо вам, что читаете эту книгу.
В следующей главе есть еще два примера по теме стимулов: «Мост между Сан-Франциско и Оклендом» и «Жизнь отдать за свою страну».
Глава 14
Примеры из практики
Чужой конверт всегда более зеленый
В азартных играх неизменно действует принцип: выигрыш одного игрока обязательно означает проигрыш другого. Следовательно, прежде чем соглашаться на участие в такой игре, особенно важно оценить ее с точки зрения другого игрока. Если кто-то готов предложить вам пари, значит он рассчитывает на то, что он выиграет, а вы проиграете. Кто-то из вас ошибается, но кто? В этом разделе мы рассмотрим пример пари, которое, на первый взгляд, принесет прибыль обеим сторонам. Это просто невозможно, но в чем же подвох?
Есть два конверта, в каждом из которых находится определенная сумма денег: 5, 10, 20, 40, 80 или 160 долларов. В одном из конвертов ровно в два раза больше денег, чем в другом. Конверты перемешивают и отдают один из них Али, другой Бабе. После того как оба конверта вскрывают (но их содержимое не раскрывается), Али и Баба получают возможность обменяться конвертами. Если обе стороны готовы сделать такой обмен, им это разрешается сделать.
Предположим, Баба открывает свой конверт и видит там 20 долларов. Он рассуждает так: «Али с равной степенью вероятности может обнаружить в своем конверте либо 10, либо 40 долларов. Следовательно, мой ожидаемый выигрыш в случае обмена конвертов составит (10 + 40) / 2 = 25 > 20. Поскольку на кону такая небольшая сумма, риск незначителен, поэтому обмен конвертами отвечает моим интересам». Рассуждая аналогичным образом, Али примет решение обменяться конвертами в любом случае: и если увидит в конверте 10 долларов (и придет к выводу, что может получить либо 5, либо 20 долларов, что в среднем составляет 12,5 доллара), и если в конверте окажется 40 долларов (в таком случае возможный выигрыш составит либо 20, либо 80 долларов, в среднем – 50 долларов).
Здесь что-то не так. Обе стороны не могут остаться в выигрыше, обменявшись конвертами, поскольку общая сумма денег при этом остается неизменной. Кто из двух игроков ошибается в своих рассуждениях? Стоит ли Али и (или) Бабе предлагать обмен конвертами?
Анализ примераТакой обмен вообще был бы невозможен, если бы Али и Баба рассуждали логично и исходили из предположения, что другой делает то же самое. Ошибка их рассуждений заключалась в предположении о том, что готовность другого игрока обменяться конвертами не раскрывает никакой информации. Эту задачу можно решить, более внимательно проанализировав, что думает каждый игрок о ходе мыслей другого игрока. Сначала рассмотрим точку зрения Али на то, как размышляет Баба. Затем проанализируем ситуацию с точки зрения Бабы и попытаемся определить, что о нем думает Али. Снова вернемся к мыслям Али о том, что думает Баба о том, что думает о нем Али. Все это звучит сложнее, чем есть на самом деле, поэтому приведем конкретный пример.
Предположим, Али открывает конверт и видит там 160 долларов. Очевидно, что у Али более крупная сумма, поэтому в обмене нет смысла. Поскольку Али не станет меняться конвертами, имея 160 долларов, Баба должен отказаться от обмена, если у него 80 долларов, поскольку для Али обмен был бы выгоден только в случае, если бы в конверте было 40 долларов, но тогда Баба должен сохранить свои 80 долларов. Однако если Баба не станет меняться конвертами, имея 80 долларов, то Али не стоит этого делать, обнаружив в своем конверте 40 долларов, так как обмен был бы возможен, только если бы в конверте Бабы находилось 20 долларов. Мы пришли к исходному предположению. Если Али не хочет обмениваться конвертами, имея 40 долларов, тогда обмена не будет и в случае, если Баба найдет в своем конверте 20 долларов: он не станет менять 20 долларов на 10. Единственный, кто будет готов пойти на обмен, – это тот, кто обнаружит в своем конверте 5 долларов, но тогда другой игрок не захочет с ним меняться.
Как выбрать самое лучшее место
Один из наших коллег решил пойти на концерт Джексона Брауна, который проходил в Саратога-Спрингс. Он приехал одним из первых и осмотрел территорию, чтобы найти место получше. Накануне шел дождь, поэтому зона перед сценой была вся в грязи. Наш коллега выбрал место, которое было поближе к сцене, но за грязной зоной. В чем он ошибся?
Анализ примераНет, ошибка нашего коллеги была отнюдь не в том, что он выбрал концерт Джексона Брауна: его хит 1972 года Doctor, My Eyes до сих пор остается классикой. Ошибка состояла в том, что он не заглянул в будущее. Когда начали сходиться другие зрители, поле заполнялось до тех пор, пока позади него уже негде было сесть. Опоздавшие начали располагаться на грязном участке. Разумеется, никто не хотел там садиться, поэтому все стояли и полностью перекрыли вид нашему коллеге, а его одеяло затоптали грязными ботинками.
Это именно тот случай, в котором применение правила «смотреть вперед и рассуждать в обратном порядке» все изменило бы. Дело не в том, чтобы выбрать лучшее место, рассчитывая на то, что вы будете сидеть там в одиночестве. Необходимо подумать о том, где устроятся другие зрители, и на основании этого прогноза выбрать такое место, с которого действительно будет все хорошо видно. Как говорил великий Грецки{176}, «я мчусь туда, где шайба будет, а не туда, где она находится сейчас».
Красное – я выигрываю, черное – ты проигрываешь
Скорее всего, нам никогда не представится случай командовать яхтой во время гонок на Кубок «Америки», однако одному из нас все-таки пришлось столкнуться с этим. Барри праздновал окончание учебы на одном из майских балов в Кембриджском университете (это английский эквивалент выпускного бала). Одним из праздничных развлечений была игра в казино. Всем раздали фишки на сумму 20 фунтов. Тот, кто к концу вечера сумеет выиграть больше всех, получал бесплатный пригласительный билет на выпускной бал следующего года. К тому времени, когда настала пора в последний раз запустить колесо рулетки, по счастливой случайности Барри набрал наибольшее число фишек – на 700 фунтов, а второй результат был у молодой англичанки, которая выиграла фишек на 300 фунтов. Все остальные участники игры остались без денег. Перед тем как игрокам предстояло сделать последние ставки, эта девушка предложила Барри разделить пригласительный билет на бал следующего года, но он отказался. При таком серьезном преимуществе не было смысла соглашаться на половину выигрыша.