- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (ПА) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Области, в которых состояние равновесия неустойчиво и происходит П. в. к., как уже указывалось, лежат вблизи значений w0 /w = 1/ 2 , 1, 3 /2 ,... (рис. 3 ) и зависят от относительной амплитуды изменений параметра a. Чем больше эта амплитуда, тем шире область, т. е. тем при большем отличии w0 /w от 1 /2 , 1 и т.д. всё ещё наблюдается П. в. к. Вне областей неустойчивости П. в. к. не наступает и колебания в системе отсутствуют (в отличие от «обычного» возбуждения вынужденных колебаний, когда и вдали от резонанса слабые вынужденные колебания всё же возникают). Вблизи значений w0 /w= 1 /2 , 1, 3 /2 ,... П. в. к. наступает, как видно из рис. 3, при сколь угодно малых амплитудах изменений параметра. Это — следствие того, что мы пренебрегли потерями энергии, всегда существующими в реальной колебательной системе. Если учесть потери энергии, то области, в которых состояние равновесия неустойчиво (пунктир на рис. 3), уменьшаются. Как и следовало ожидать, при наличии потерь неустойчивость даже в отсутствие расстройки наступает только при достаточно большой амплитуде изменений параметра, когда вклад энергии от периодического изменения параметра превосходит потери. Т. о., вследствие потерь энергии, для П. в. к. всегда существует порог. В системах с большими потерями этот порог поднимается выше предела возможных изменений параметра сначала для более высоких отношений w0 /w, а затем и для w0 /w= 1 /2 , т. е. явление П. в. к. вообще не может возникнуть.
Лит.: Горелик Г. С., Колебания и волны, 2 изд., М., 1959, гл. Ill, §9; Мандельштам Л. И., Полн. собр. трудов, т. 4, М., 1955 (Лекции по колебаниям, ч. 1, лекции 18—19).
С. М. Хайкин.
Рис. 1. а — параметрическое возбуждение колебаний струны; б — вынужденное колебание струны.
Рис. 2. а — устройство маятника с переменной длиной подвеса; б — схема движения тела маятника за один период.
Рис. 3. Области, в которых возможно параметрическое возбуждение колебаний.
Параметрическое представление
Параметри'ческое представле'ние функции, выражение функциональной зависимости между несколькими переменными посредством вспомогательных переменных параметров . В случае двух переменных х и у зависимость между ними F (х , у ) = 0 может быть геометрически истолкована как уравнение некоторой плоской кривой. Любую величину t , определяющую положение точки (х , у ) на этой кривой (например, длину дуги, отсчитываемой со знаком + или — от некоторой точки кривой, принятой за начало отсчёта, или момент времени в некотором заданном движении точки, описывающей кривую), можно принять за параметр, в функции которого выразятся х и у :
x = j(t ), у = y(t ). (*)
Последние функции и дадут П. п. функциональной зависимости между х и у , уравнения (*) называют параметрическими уравнениями соответствующей кривой. Так, для случая зависимости x 2 + y 2 = 1 имеем П. п. х= cos t , у = sin t (0 £ t < 2p) (параметрические уравнения окружности); для случая зависимости х 2 —у 2 = 1 имеем П. п. ; (t ¹ 0) или также х = cosec t , y=ctg t (— p< t < p, t ¹ 0) (параметрические уравнения гиперболы). Если параметр t можно выбрать так, что функции (*) рациональны, то кривую называют уникурсальной (см. Уникурсальная кривая ); такой является, например, гипербола. Особенно важно П. п. пространственных кривых, т. е. задание их уравнениями вида: х = j(t ), у = y (t ), z = c (t ). Так, прямая в пространстве допускает П. п. х = а + mt ; у = b + nt ; z = с + pt , винтовая линия — П. п. х = a cos t ; у = a sin t ; z = ct .
Для случая трёх переменных х , у и z , связанных зависимостью F (x , y , z ) = 0 (одну из них, например z, можно рассматривать как неявную функцию двух других), геометрическим образом служит поверхность. Чтобы определить положение точки на ней, нужны два параметра u и u (например, широта и долгота на поверхности шара), так что П. п. имеет вид: х = j(u, u), у = y (u, u); z = c (u , u). Например, для зависимости x 2 + y 2 = (z 2 +1 )2 имеем П. п. х = (u 2 —1 ) cos u; у = (u 2 + 1) sinu; z = u . Важнейшими преимуществами П. п. являются: 1) то, что они дают возможность изучать неявные функции и в тех случаях, когда переход к их явному заданию без посредства параметров затруднителен; 2) то, что здесь удаётся выражать многозначные функции посредством однозначных. Вопросы П. п. изучены особенно хорошо для аналитических функций. П. п. аналитических функций посредством однозначных аналитических функций составляет предмет теории униформизации .
Параметрон
Параметро'н, элемент автоматики и вычислительной техники, принцип действия которого основан на особенностях параметрического возбуждения и усиления электрических колебаний . Простейший П. представляет собой колебательный контур, настроенный на частоту f0 . При периодическом изменении под воздействием сигнала накачки с частотой fн , равной примерно 2f0 , одного из энергоёмких параметров контура в нём возникает колебание с частотой , когерентное по отношению к возбуждающему колебанию. При этом фаза возбуждённых в П. колебаний может принимать одно из двух отличающихся на 180° значений, условно обозначаемых (0, p), и сколь угодно долго находиться в этом состоянии. Эта способность П. выбирать одну из двух стабильных фаз называется свойством квантования фазы. П. как логический элемент или ячейка запоминающего устройства был запатентован в 1954 Э. Гото (Япония). На основе П. созданы счётчики, регистры, сумматоры, запоминающие устройства и системы управления ЭВМ.
По типу нелинейного элемента различают индуктивные П. (с ферритовыми сердечниками, магнитной плёнкой), ёмкостные П. (на параметрических полупроводниковых диодах, сегнетоэлектрических конденсаторах) и резистивные П. (на туннельных и др. полупроводниковых диодах с вольтамперной характеристикой, имеющей падающий участок). Скорость (тактовая частота f т ) переключения П. пропорциональна частоте накачки и меньше её примерно в 20—50 раз. Наиболее надёжными и дешёвыми являются одноконтурные индуктивные (на ферритовых сердечниках) П. с потребляемой мощностью 15—50 мвт , f т £ 100 кгц ; более экономичные (3— 6 мвт ) ёмкостные П. на конденсаторах имеют более высокое быстродействие (f т » 5 Мгц ); ещё больше быстродействие резистивных П., т.к. продолжительность процесса установления колебаний в них соизмерима с периодом собственных колебаний контура. В индуктивных П. на тонких магнитных плёнках или в ёмкостных П. на полупроводниковых диодах тактовая частота достигает 150 Мгц . В связи с разработкой параметрических усилителей и генераторов света появляется принципиальная возможность перехода к частотам оптического диапазона, что должно привести к существенному повышению быстродействия П.
Лит.: Параметроны. [Сб. ст.], пер. с япон., кн. 1—2, М., 1961—62; Параметроны в цифровых устройствах, М., 1968; Вишневецкий А. И., Немецкий Г. М., Параметроны и их применение в устройствах связи, М., 1968.
В. И. Медведев.
Параметры орбиты
Пара'метры орби'ты, величины, характеризующие ориентацию орбиты небесного тела (в том числе искусственного), её размеры и форму, а также положение небесного тела на орбите. В астрономии в качестве П. о. принимают обычно так называемые элементы орбиты (см. Орбиты небесных тел ).

