- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович
Шрифт:
Интервал:
Закладка:
(3.4)В этом случае (т. е., если заданы масса и температура облака), если размер облака R < R1, оно будет сжиматься.
Легко убедиться, что «обычные» облака межзвездного газа с M
M
и R
1 пс не будут сжиматься собственной гравитацией, а газово-пылевые комплексы M
103—104 M
, T
50° и радиусом порядка десятков парсек будут. При условиях, которые реализуются для подавляющего большинства звезд, такое сжатие автоматически вызовет повышение температуры, и следовательно, давления. Увеличившееся давлением уравновесит силу гравитации, и облако перестанет сжиматься. Об этом подробно будет идти речь в § 6. Но в условиях сжимающихся облаков межзвездного газа температура в процессе сжатия не будет повышаться, по крайней мере на начальной, самой важной стадии сжатия. Это объясняется наличием у таких облаков весьма эффективно работающего «холодильника». Ниже мы увидим, что у этих плотных облаков водород, так же как и большинство других элементов, находится в молекулярном состоянии. Возбуждение столкновениями вращательных уровней молекул водорода с последующим излучением инфракрасной линии с длиной волны 28 мкм будет поддерживать температуру газа на почти постоянном уровне. Дело в том, что сжимающееся облако (до поры, до времени) прозрачно для этого инфракрасного излучения, которое тем самым покинет облако. Поэтому гравитационная энергия, освобождающаяся при сжатии облака, не будет тратиться на нагрев его вещества, а трансформировавшись в инфракрасное излучение, уйдет в мировое пространство. Будет даже некоторое понижение температуры облака, так как по мере его уплотнения греющие облако рентгеновские кванты (заполняющие галактику) будут поглощены в его наружных слоях. Кроме того, увеличивается число молекул, охлаждающих газ.
Вернемся теперь к условию гравитационного сжатия облака, списываемому формулой (3.4). Рассмотрим случай, когда масса облака равна массе Солнца, а его температура 10 К. Тогда из формулы (3.4) следует, что такое облако будет сжиматься, если его радиус меньше 0,02 парсек. Следовательно, плотность такого облака будет 2
10-18 г/см3, а концентрация газа в нем
106 см-3 — величина довольно значительная. Если же масса облака будет 10 солнечных масс, то, как можно убедиться, средняя концентрация частиц газа, при которой облако начинает сжиматься, будет значительно меньше,
104 см-3. Как мы увидим ниже, облака с такой концентрацией газа действительно наблюдаются, Таким образом., для гравитационного сжатия облаков большой массы критерий, описываемый формулой (3.4), оказывается значительно «мягче». Поэтому естественно предположить, что конденсация облаков межзвездного газа в звезды происходит в несколько этапов. Сначала сжимается протяженный газово-пылевой комплекс с большой массой, например, в тысячи раз превышающей массу Солнца. Когда этот комплекс достаточно сожмется и его средняя плотность значительно увеличится, отдельные его части начнут сжиматься независимо, и комплекс распадается на ряд более мелких и менее массивных конденсаций. Этот естественный процесс качественно объясняет, почему звезды рождаются скоплениями (ассоциациями), а не «индивидуально», хотя при некоторых условиях возможно появление и одиночных звезд.
При таком механизме образования звезд из плотных облаков межзвездной среды сразу же возникает одна серьезная трудность. Дело в том, что отдельные «куски» облаков межзвездного газа движутся друг по отношению к другу со скоростью около 1 км/с. Это непосредственно следует из анализа профилей радиолинии 21 см. По этой причине облака должны обладать некоторым моментом количества движения. Если учесть огромные размеры облаков, то этот вращательный момент оказывается очень большим. Согласно законам механики, если бы облако было изолированным, то при его сжатии под влиянием собственной гравитации вращательный момент должен был сохраниться. Но это означает, что по мере сжатия облака оно должно было бы вращаться вокруг своей оси все быстрее и быстрее. Скорость осевого вращения достигла бы скорости света еще до того, как облако превратилось бы в звезду! Все эти выводы, однако, были получены в предположении, что сжимающееся облако изолировано. На самом деле это, конечно, не так. Оно окружено другими облаками и связано с ними магнитными силовыми линиями. Вот по этим-то силовым линиям и проходит «утечка» по крайней мере 90% вращательного момента облака. Пока вещество облака обладает достаточно высокой электропроводностью (для чего оно должно быть хотя бы немного ионизовано), магнитные силовые линии как бы «приклеены» к нему. Из-за этого вращательный момент, как по гибким струнам, «перекачивается» от сжимающегося облака к окружающей его межзвездной среде. Этот процесс «перекачки» вращательного момента прекратится только тогда, когда из-за возросшей плотности ионизация вещества облака сильно упадет и его электропроводность значительно уменьшится. Тогда магнитная связь облака с окружающей средой прекратится. Образовавшиеся таким образом звезды сохраняют довольно большой вращательный момент, который и наблюдается у сравнительно массивных звезд, начиная от спектрального класса О. Что же касается менее массивных звезд (вроде нашего Солнца), то они, в принципе, могут «освободиться» от избыточного вращательного момента довольно своеобразным путем, образуя вокруг себя планетные системы[ 12 ]. Однако более вероятным механизмом потери такими звездами вращательного момента является истечение вещества из их атмосфер («звездный ветер») при наличии магнитных полей!
Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием некоторого ускорения. Заметим, что по мере сжатия облака величина ускорения, действующего на его частицы, будет увеличиваться. Мы, однако, будем для простоты рассуждения считать его постоянным, что не отразится на нашей оценке. При таком упрощающем предположении путь R, пройденный поверхностными слоями звезды за время t, будет равен
(3.5)где ускорение g =
. Отсюда следует, что
(3.6)где мы ввели среднюю плотность облака
=
.
Из формулы (3.6) следует, что время существенного сжатия облака зависит только от его средней первоначальной плотности. Формулу (3.6) можно написать иначе, подставив в нее значение M из условия гравитационной неустойчивости (3.4):
(3.7)Полагая молекулярный вес
= 2, а T
20°, найдем, что облако с массой, равной солнечной, сожмется за миллион лет.

