- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
У интуиции есть своя логика. Гёдель. Теоремы о неполноте. - Gustavo Pineiro
Шрифт:
Интервал:
Закладка:
Пропозициональные функции получили это название, потому что они похожи на функции, но ставят в соответствие не числа, а высказывания. Например, пропозициональная функция "х — четное число" сопоставляет числу 2 высказывание "2 — четное число".
В запись пропозициональных функций мы можем ввести числовые функции, если только они могут быть выражены в терминах сумм, произведений и логических операций. Так, мы можем записать: "х + 3 — простое число" или даже "х² делится на 18", и в обоих случаях это полноправные пропозициональные функции.
Теперь рассмотрим определение функции d(x), которая на самом деле вычисляется только для чисел, являющихся кодами пропозициональных функций. Поясним определение на примере. Возьмем код пропозициональной функции, например 171, который, как мы предположили, является числом Гёделя выражения "х — четное число". Далее в этой пропозициональной функции заменим х числом 171. Мы получим высказывание "171 — четное число". Код этого высказывания — d( 171), число, которое диагональная функция назначает числу 171:
171 → соответствует "х — четное число" → заменяем х на 171 → "171 — четное число" → d(171) — код "171 — четное число".
В первых примерах мы указали, что "171 — четное число" имеет код, равный 61. Следовательно, d(171) = 61. Диагональная функция сопоставляет числу 171 значение 61.
Во втором примере вычислим d(162), где 162 — это код "отделится на 18":
162 → соответствует "х делится на 18" → заменяем х на 162 → "162 делится на 18" → d(162) — это код "162 делится на 18".
Так как "162 делится на 18" имеет код 103, то d(162) = 103. Все шаги, определяющие диагональную функцию, могут быть вычислены алгоритмически, следовательно, ее определение можно выразить с помощью сумм, произведений и логических операций. Это обстоятельство дает нам право ввести числовую функцию d(x) в выражение пропозициональной функции, точно так же как в предыдущих примерах мы это делали с х² или х + 3. Таким образом мы можем рассмотреть выражение "d(x) — четное".
Предположим, что "d(x) — четное" соответствует код 423, и применим эту процедуру для вычисления d(423):
423 —> соответствует "d(x) — четное" -" заменяем х на 423 —" —" "d(423) — четное" —> d(423) — код "d(423) — четное".
ТЕОРЕМА ГУДСТЕЙНАВозьмем любое натуральное число, например 25. На его основе построим последовательность чисел, называемую последовательностью Гудстейна для числа 25 (названа в честь Рубена Луиса Гудстейна (1912-1985), английского математика, который впервые ее определил). Для получения второго числа последовательности запишем 25 как сумму степеней числа 2 так, чтобы каждая степень появлялась ровно один раз (1 — это тоже степень числа 2, поскольку 20 = 1):
25 = 24+23+1.
И запишем также каждый показатель степени как сумму степеней числа 2:
25 = 22² +22+1 + 1.
Второй член последовательности получается, если заменить каждое 2 на 3 в выражении 222 + 22+1 +1 и затем вычесть 1:
(З3³ + З3+1 +1) - 1 = З3³ + З3+1 = 7625597485068
Второе число последовательности Гудстейна для числа 25 — это 7625597485068. Для получения третьего числа заменяем каждое 3 на 4 в З3³ + З3+1 и вычитаем 1. Получается 44⁴ + 44+1 - 1, операция, которая в результате дает число из 155 цифр. Прежде чем перейти к следующему шагу, надо записать 44⁴ + 44+1 - 1 как сумму степеней числа 4, в которой каждая степень появляется самое большое 3 раза и в которой показатели степени также являются суммой степеней числа 4. Заметьте, что 44⁴ + 44+1 - 1 не записано таким образом, поскольку присутствует вычитание. Правильная запись:
44⁴ + 44 + 44 + 44 + 41+1+1 + 41+1+1 + 41+1+1 + 41+1 + 41+1 + 41+1 + 4 + 4 + 4 + 1 + 1 + 1.
Чтобы получить четвертое число, заменим каждое 4 на 5 и вычтем 1. То есть:
55⁵ + 55 + 55 + 55 + 51+1+1 + 51+1+1 + 51+1+1 + 51+1 + 51+1 + 51+1 + 5 + 5 + 5 + 1 + 1.
Результат последнего вычисления состоит из более чем 2000 цифр. Для получения следующего числа заменим каждое 5 на 6 и вычтем 1, и так далее. Кажется, что последовательность растет до бесконечности. Однако в теореме Гудстейна, доказанной им около 1950 года, утверждается, что вне зависимости от исходного числа последовательность всегда за конечное количество шагов достигнет 0. В доказательстве Гудстейна были использованы понятия теории множеств и оставалась открытой возможность того, что оно неосуществимо на основе аксиом Пеано. Это было подтверждено в 1982 году Лори Кирби и Джеффом Пэрисом, которые доказали, что теорема Гудстейна действительно недоказуема на основе аксиом Пеано с помощью рассуждений, проверяемых алгоритмически.
Посмотрим внимательно на последний шаг: d(423) — это код "d(423) — четное". То есть "d(423) — четное число" может читаться как самореферентное высказывание, говорящее о своем собственном коде следующее: "мой код — четное число". Если бы у "d(423) — четное число" кодом было 503, то высказывание можно было бы записать как "503 — четное число" и в нем бы ложно утверждалось, что его собственный код — четное число.
Метод самореференции говорит, что эта процедура может применяться к любому арифметическому свойству Р Возьмем пропозициональную функцию "х выполняет свойство Р" и трансформируем ее в "d(x) выполняет свойство Р". Если код последнего выражения — число я, то "d(n) выполняет свойство Р" может быть прочитано посредством кодификации Гёделя как самореферентное высказывание, гласящее: "мой код выполняет свойство Р". Теперь посмотрим, как этот метод приведет нас в итоге к искомому высказыванию G.
Мы уже сказали, что "быть кодом доказуемого высказывания" — это свойство, которое можно выразить в терминах сумм, произведений и логических операций. Очевидно, что то же самое происходит и с его отрицанием. Следовательно, мы можем записать пропозициональную функцию:
"x: не является кодом доказуемого высказывания", что, как говорится в методе самореференции, превращается в: "d(x) не является кодом доказуемого высказывания". Если его код — число т, то:
G: "d(m) не является кодом доказуемого высказывания"
имеет в качестве кода число d(m) и может рассматриваться как самореферентное высказывание, говорящее о своем коде следующее: "мой собственный код не соответствует доказуемому высказыванию". Другими словами, в G говорится:
"G недоказуемо".
Как мы видели в начале доказательства, это высказывание является истинным и одновременно недоказуемым (вспомним, что "доказуемый" всегда означает "доказуемый на основе предложенных аксиом"). Мы доказали, что существует высказывание G, являющееся истинным и недоказуемым, и описали шаги, необходимые для того, чтобы записать его. Этим завершается доказательство первой теоремы Гёделя о неполноте.
ПАРАДОКС ЛЖЕЦАОдин из самых древних известных парадоксов — это так называемый парадокс лжеца. Он возникает, если поставить вопрос, является ли утверждение "это предложение ложное" истинным или ложным. Если утверждение истинно, то, судя по его смыслу, оно оказывается ложным. Но если оно ложно, то оно получается истинным. Так мы сталкиваемся с бессмыслицей, порочным кругом, который снова и снова приводит нас от истинности к ложности и от ложности к истинности. В своей статье 1931 года Гёдель объяснил, что его доказательство найдено под влиянием парадокса лжеца, только вместо того чтобы написать высказывание, говорящее о собственной ложности, Гёдель написал высказывание, говорящее о собственной недоказуемости. Высказывание "это предложение ложно" — парадоксальная бессмыслица. Но высказывание "это предложение недоказуемо на основе предложенных аксиом" — недоказуемая истина.
Важное пояснение: рассуждение, которое мы провели, на самом деле не является формальным доказательством первой теоремы Гёделя о неполноте. Это только введение, полезное для понимания основных идей, но не объясняющее специфических деталей того, как эти идеи применяются на практике. Если читателя заинтересовали детали, он может углубиться в технические работы по математической логике.
Как выглядело бы высказывание G в нашем гипотетическом примере? Вспомним, что в этом примере свойство, характеризующее коды доказуемых высказываний, — это "быть простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Возьмем пропозициональную функцию "х не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел" и трансформируем ее в "d(x) не является простым числом, которое может быть записано как сумма или разность трех последовательных простых чисел". Предположим, что последнему выражению соответствует число 909.

