- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Беседы о жизни - Станислав Галактионов
Шрифт:
Интервал:
Закладка:
Короче говоря, те, кого интересует возможность получения конечного результата расчета (а не его точность), должны обратиться ко второму типу приближенных методов, где результаты непосредственно зависят от степени оправданности сделанного предположения, от того, в какой мере избранному приближению удовлетворяют истинные условия задачи. Более того, как раз в трезвой оценке такой степени соответствия и состоит в основном искусство теоретика. Вряд ли, например, был хорошим теоретиком сыщик из романа Р. Шекли «Обмен разумов», который принципиально отказывался от розыска преступника, ибо по теории вероятностей выходило, что они и так когда-нибудь встретятся. (Справедливости ради отметим, что для случая абсолютно бессмертных сыщиков и преступников это приближение вполне верно; практика показала, однако, что ни один из преступников не был изловлен с помощью такого, казалось бы, теоретически безупречного подхода.)
Следовательно, когда мы говорим о возможных приближенных подходах к решению интересующей нас задачи определения пространственной структуры молекулы белка, мы имеем в виду именно приближения второго типа; в частности, именно таковы по своему характеру приближения, положенные в основу упоминавшихся методов квантовохимического расчета сложных молекул. При таких подходах обычно какие-то эффекты недоучитываются, какие-то величины полагаются малыми (или, наоборот, очень большими), какие-то процессы считаются независимыми, то есть не влияющими друг на друга; и все эти приближения должны получить солидное теоретическое или экспериментальное обоснование, без которого сами результаты расчета не представляют никакой ценности. Ну и, разумеется, наши приближения должны «работать», должны давать возможность все-таки получать результат ценой не чрезмерных вычислительных усилий, иначе говоря, не превращаться в тот самый уже упоминавшийся камень (так и хочется добавить: «лежачий»).
На каком же пути возможны поиски «работоспособных» приближений?
Вестхеймер, Хилл и Китайгородский«Изваять статую крайне просто — нужно лишь отсечь лишние элементы мраморной глыбы». Подобного рода рецепт, авторство которого различные историки искусства приписывают доброму десятку великих скульпторов (последним в этом ряду был, кажется, О. Роден), мог бы с успехом быть перефразирован применительно к деятельности исследователей-теоретиков. При построении рациональной модели объекта исследования (или явления, или процесса) безжалостно отсекаются подробности и оставляются лишь наиболее характерные, типичные, существенные детали. Конечно, всегда нужно считаться с опасностью упустить при этом что-то важное и необходимое, но на такой риск приходится идти: теории, способной объять необъятное, все же нет.
С другой стороны, процесс отсечения ненужных элементов такой уникальной по совершенству и изяществу мраморной глыбы, как квантовая теория строения молекул, следует вести сугубо осторожно: неоправданно смелому теоретику ничего не стоит выплеснуть вместе с водой ребенка.
Может быть, именно поэтому был несколько сдержанно встречен подход к описанию молекулярных структур, развитый в конце 40-х годов советским физиком А. Китайгородским и американцами Ф. Вестхеймером и Т. Хиллом. При определенных допущениях, утверждали они, уравнения квантовой механики все-таки не противоречат возможности представления молекул в виде структуры, состоящей из атомов, которые могут взаимодействовать: притягиваться или отталкиваться. Подобрав на основании данных эксперимента эмпирический закон такого взаимодействия, можно попытаться рассчитать, причем сравнительно просто (с вычислительной точки зрения), целый ряд физических характеристик молекулы. В том числе — что для нас особенно важно — определить устойчивые конформации молекулы.
Поистине непостижима логика нашего повествования! Буквально двумя-тремя страницами ранее авторы усердно убеждали читателя, что рассмотрение всяческих внутримолекулярных явлений не только может, но и должно вестись только на «квантовом языке». И вдруг предлагается искать спасение в упрощенном, наивном да еще и полуэмпирическом (не забудьте, что законы атом-атомного взаимодействия предлагается извлекать из эксперимента) подходе.
Не выглядит ли это если не переходом с развернутыми знаменами и барабанным боем на сторону противника, то, по крайней мере, сдачей теоретических позиций, потом и кровью завоеванных квантовой механикой?
Разумеется, сердцу всякого теоретика дорога четкость и виртуозность построений квантовой механики: недаром работа по более глубокому квантовомеханическому обоснованию нового приближения, получившего название атом-атомного, интенсивно продолжается по сей день. Однако как раз к подобному случаю относится знаменитая поговорка одного из классиков современной физики, Л. Больцмана, любившего повторять: «Оставим элегантность портным и сапожникам», физика все-таки больше заботит соответствие эксперимента и результата теоретического расчета, чем строгость исходных предпосылок теории. (Трудно удержаться также от цитаты из библии теоретиков курса теоретической физики Л. Ландау и Е. Лившица: «Сделаем предположение, которое впоследствии оправдается результатом»).
В этом смысле успехи «наивного» атом-атомного приближения оказались поистине разительными: решение с его помощью таких весьма сложных для «квантового» описания задач, как определение упаковки молекул в кристаллах, расчет некоторых термодинамических и спектроскопических свойств молекул, и, наконец, исследование конформаций молекул снискали новому подходу уважение (правда, того оттенка, который иногда влечет за собой эпитет «невольное») и полностью утвердили его право на существование. С тех пор атом-атомное приближение получило заслуженно широкое распространение в молекулярной физике, физике полимеров, кристаллографии, а с возникновением молекулярной биологии стало завоевывать плацдарм и в этой области.
Каким же образом можно представить себе взаимодействие пары валентно не связанных атомов (его называют еще «невалентным» взаимодействием)? Примером, в какой-то степени иллюстрирующим закономерности этого взаимодействия, может послужить следующая простая модель: возьмем два железных шарика, один из которых магнит; оба они обтянуты толстым слоем эластичной резины. Поместим их затем на ровную полированную поверхность и начнем сближать. Пока расстояние между центрами шаров велико, они «не чувствуют» друг друга, но по мере сближения металлические «ядра» шаров начинают притягиваться, причем чем меньше расстояние, тем сила притяжения больше. Однако, как только резиновые оболочки соприкоснутся, дальнейшее сближение вызовет проявление силы отталкивания — реакцию на сжатие резины, которая будет очень резко возрастать с уменьшением расстояния между центрами. При каком-то «равновесном» расстоянии сближение прекратится: силы притяжения и отталкивания уравновесят друг друга.
Описанная картина действительно вполне соответствует зависимости сил межатомного взаимодействия от расстояния между центрами атомов: настолько, что авторы едва не поддались соблазну немедленно послать в Комитет по делам изобретений и открытий заявку на «Устройство для демонстрации невалентных взаимодействий атомов, не несущих электрических зарядов» (поскольку в случае заряженных атомов к этому взаимодействию добавится притяжение разноименных или отталкивание одноименных электрических зарядов). Неважно, что истинная природа сил межатомного взаимодействия отнюдь не магнитно-резиновая и функциональная зависимость потенциальной энергии невалентного взаимодействия от расстояния получается поэтому другой. Главное, что основной принцип соблюден: при межатомных расстояниях больше равновесного преобладают силы притяжения, при расстояниях меньше равновесного — силы отталкивания.
Мы не случайно упомянули о потенциальной энергии: дело в том, что по различным причинам (к сожалению, с объяснением, по каким именно, придется подождать до следующего раздела) удобнее производить количественную оценку взаимодействия именно по его потенциальной энергии. Эта физическая величина обладает, как известно, одной характерной особенностью: говоря о потенциальной энергии различных состояний системы (например, двух наших шаров при различных расстояниях между центрами), необходимо обязательно указать, какое из состояний системы является точкой отсчета. Точно так же необходимо, скажем, при указании высоты горной вершины иметь в виду: «над уровнем моря», величины температуры — «от нуля по Цельсию» и т. д.
В случае взаимодействия пары атомов за нулевую принимается энергия, соответствующая их бесконечному удалению. При их сближении выделяется некоторое количество энергии. Чтобы сделать этот факт более наглядным, давайте заставим наши скользящие друг навстречу другу шары тащить за собой тележки с грузом. На это и уйдет выделившаяся энергия (не правда ли, от такой картины веет до боли знакомым духом курса физики за восьмой класс?). Итак, пока шары движутся навстречу друг другу, их энергия по отношению к состоянию бесконечного удаления отрицательна, причем по мере сближения «отрицательность» этой энергии увеличивается.

