Ледники в горах - Серебрянный Леонид Рувимович
Шрифт:
Интервал:
Закладка:
Иногда на поверхность ледников обрушиваются огромные скопления камней, образующие мощные нагромождения раздробленных горных пород. Например, после землетрясения 1964 г. на Аляске на ледник Шерман обрушилась масса камней, скрывшая 8,5 км2 его поверхности. Мощность каменного чехла местами достигала 8 м. О другом обвале хочется рассказать подробнее. В 1979 г. мы вели гляциологические наблюдения на южном макросклоне Большого Кавказа, в Верхней Сванетии, где много крупных долинных ледников. Среди них особенно выделяется ледник Адиши, один из самых красивых ледников Кавказа. Все предыдущие исследователи единодушно отмечали необычную чистоту поверхности его языка. Поэтому мы крайне удивились, увидев в центре его скопление камней высотой около 50 м. Этот холм, вытянутый поперек ледника, имел форму серпа и асимметричное строение. Склон, обращенный к концу ледника, был гораздо круче противоположного. От вершины холма вдоль правого борта вверх по леднику протягивался длинный и узкий шлейф обломочного материала.
Тщательное изучение конфигурации рассматриваемого образования наряду с анализом его состава и строения позволило сделать вывод, что он сформировался за счет поступления обломочного материала на поверхность ледника, вероятно, в результате гигантского обвала конца бокового висячего ледника. Этот ледник, некогда соединявшийся с ледником Адиши, а сейчас отступивший от него на 300 м, местные жители называют Лахура, что в переводе означает «ходячий». Обвалы конца ледника, происходившие практически каждый год в августе, в конце сезона абляции, сопровождались оглушительным грохотом. По-видимому, во время одного из таких обвалов оторвавшийся конец ледника Лахура увлек за собой огромную массу камней и выбросил их на поверхность ледника Адиши.
Камни, попавшие на поверхность ледника Адиши, ожидала длинная дорога. Включившись в движение ледника, они, как по ленте конвейера, переместились вниз. Выяснилось, что за 13 лет (1966—1979 гг.) моренный холм на леднике Адиши сместился относительно устья боковой долины Лахура на 1250 м вниз по поверхности ледника. Отсюда можно заключить, что поверхностная скорость ледника составляет около 96 м/год. Поэтому можно было уверенно предсказать, что через 10—12 лет обломочный материал достигнет конца ледника. Действительно, посетив ледник в 1984 г., мы убедились, что половину пути камни уже прошли.
Таким образом, ледники являются важным агентом денудации, регулирующим перемещение масс твердого вещества из верхних ярусов гор в более низкие и в конечном итоге выравнивающим рельеф. Грузоподъемность ледников чрезвычайно велика. Известны случаи, когда ледники перемещали глыбы размером в несколько десятков метров в поперечнике.
В целом распределение камней на поверхности ледников зависит от типа оледенения, условий существования ледников, а также плановой конфигурации ледосборов (рис. 6). Поэтому на простых ледниках чаще встречают лишь боковые морены, протягивающиеся вдоль бортов. На языках сложнодолинных ледников, ниже слияния ледников-притоков, прослеживаются длинные ленты срединных морен, образующиеся из материала двух боковых морен ледников-притоков. Если породы, слагающие склоны ледосборов ледников-притоков, различаются по составу, то это отражается и на составе срединных морен. Причем даже визуально последние четко дифференцируются на две или более разноцветных полос.
Рис. 6. Формирование срединных морен
А-А', Б-Б', В-В' — срединные морены и их продольные сечения; Г-Г', Д-Д' — поперечные сечения через язык ледника
Нередко источниками срединных морен служат изолированные выступы скал, прорывающиеся сквозь толщу льда,— нунатаки. Морены, протягивающиеся от нунатаков, могут достигать значительных размеров. Так, длина срединной морены ледника Ветеранен на Шпицбергене составляет 15 км.
На ледниках часто встречаются и очень короткие срединные морены, внезапно появляющиеся на самых концах языков и не имеющие видимой связи с определенными скальными выступами. Тщательное изучение состава срединных морен, проведенное нами на ледниках Кавказа, Тянь-Шаня и Шпицбергена, показало, что их морфология тесно связана с гляциологическими факторами и прежде всего с тем, насколько удален источник поступления камней от границы питания ледника.
Камни, падающие на ледник в области питания, погребаются под снегом и перемещаются во внутренних частях ледника, вытаивая на поверхность только на его конце. Чем дальше расположен скальный выступ от границы питания, тем короче будет срединная морена. И наоборот, если источники камней находятся в зоне абляции, камни переносятся главным образом на поверхности ледника. Соответственно самые длинные срединные морены на любом леднике начинаются от выступов коренных пород, расположенных в районе границы питания.
В качестве иллюстрации этой принципиальной модели можно привести поверхностные морены ледника Трюггвебреен на Шпицбергене (рис. 7). Язык ледника протяженностью около 8 км находится в глубоком троге в зоне распространения пород серии Финланнсвеген — гранатово-слюдяных и известковых сланцев. Здесь на поверхности ледника прослеживается пять срединных морен разной длины и окраски. Три из них расположены вдоль левого борта ледника и имеют длину 6—7 км. Установлено, что эти морены начинаются от скальных выступов в зоне Финланнсвеген и сложены соответствующими породами.
Рис. 7. Петрографический состав крупнообломочного материала в моренах ледника Трюггвебреен на Шпицбергене
Породы формации Гекла-Хук: а — кварц-полевошпатовые сланцы с биотитом, очковые гнейсы и другие породы серии Планетфьелла; б — полевошпатовые сланцы, кварциты с мусковитом, амфиболиты серии Харкербреен; в — кварц-полевошпатовые гнейсы и сланцы с мусковитом и биотитом, амфиболиты серии Харкербреен (амфиболитовая зона); г — известковые и гранатовые слюдяные сланцы серии Финнланнсвеген; д — гранитогнейсы и кварциты; с — прибрежная равнина с прерывистым чехлом четвертичных отложений; ж — срединные морены
В осевой зоне ледника выражены и короткие срединные морены. От конца ледника они прослеживаются вверх только на 1—3 км и затем скрываются подо льдом. Визуально источник формирования их установить невозможно. Лишь литологический анализ показал, что они сложены породами серий Планетфьелла и Харкербреен: полевошпатовыми сланцами, кварцитами с мусковитом, амфиболитами, очковыми гнейсами и др. После детальных маршрутов в область питания ледника выяснилось, что эти породы слагают скалы в отдаленных частях ледосборов. Таким образом, удалось четко установить связь между короткими срединными моренами на конце ледника и нунатаками в области питания. Обломки, ссыпающиеся со склонов нунатаков, сразу же погребаются под снегом и, по-видимому, перемещаются на значительное расстояние внутри ледника, вытаивая лишь на его конце. Напротив, обломки, ссыпающиеся с бортов трога в зоне Финланнсвеген, т. е. в пределах области абляции ледника, переносятся вниз по поверхности льда.
Изучив состав и строение поверхностных морен не только на леднике Трюггвебреен, но и на соседних ледниках, тоже спускающихся к берегу Вейде-фьорда, мы смогли уточнить представления о рельефе и геологическом строении обширной труднодоступной территории на юго-западе Ню-Фрисланна. В частности, оказалось, что морфоструктурные и петрографические зоны здесь имеют субмеридиональное простирание. Видимые части этих зон выражены в рельефе в форме относительно небольших скальных массивов, разобщенных снежно-фирновыми полями.
Итак, сопоставляя состав камней в срединных моренах с геологическим строением бортов ледосборов, можно с большой точностью определить места образования даже самых коротких срединных морен. Такие сведения весьма полезны для уточнения представлений о динамике ледников, особенно в районах сетчатого оледенения, где ледяные потоки и скальные останцы образуют причудливую мозаику. Зная состав каменного материала в коротких клиновидных срединных моренах на концах выводных ледников, можно определить контуры фирновых бассейнов и положения ледоразделов, откуда потоки льда растекаются в разных направлениях.