Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Научпоп » Популярная библиотека химических элементов. Книга первая. Водород — палладий - Коллектив авторов

Популярная библиотека химических элементов. Книга первая. Водород — палладий - Коллектив авторов

Читать онлайн Популярная библиотека химических элементов. Книга первая. Водород — палладий - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 10 11 12 13 14 15 16 17 18 ... 130
Перейти на страницу:

Получившийся бериллат натрия гидролизуют и на центрифуге отделяют гидроокись.

Гидроокись превращается во фторид тоже лишь после нескольких операций, каждая из которых достаточно сложна и трудоемка. Восстановление магнием идет при температуре 900°С, ход процесса тщательно контролируется. Важная деталь: тепло, выделяющееся в реакции, поглощается с той же скоростью, что и выделяется. Полученный жидкий металл выливают в графитовые изложницы, но он загрязнен шлаком, и поэтому его еще раз переплавляют в вакууме.

БЕРИЛЛИЙ В БЫТУ. Сферы применения бериллия не ограничиваются «высокой» техникой. С изделиями из никель-бериллиевых сплавов (содержание Be не превышает 1,5%) можно встретиться и в повседневной жизни. Из этих сплавов изготавливают хирургические инструменты, иглы для подкожных инъекций, литые металлические зубы. Из сплава «элинвар» (никель, бериллий, вольфрам) в Швейцарии делают пружины для часов. Меднобериллиевый сплав в США используют для изготовления втулок пишущего механизма шариковых ручек.

ИСКУССТВЕННЫЕ ИЗУМРУДЫ. Получить изумруды искусственным путем гораздо труднее, чем большинство других драгоценных камней. Главная причина в том, что берилл — сложное комплексное соединение. Однако ученые смогли имитировать природные условия, в которых происходило образование минерала: изумруды «рождаются» при очень высоком давлении (150 тыс. атм) и высокой температуре (1550°С). Искусственные изумруды могут использоваться в электронике.

БЕРИЛЛИЙ И СВЕРХПРОВОДИМОСТЬ. Сейчас известно более тысячи материалов, приобретающих при температуре, близкой к абсолютному нулю, свойство сверхпроводимости. В их числе — металлический бериллий. Будучи сконденсирован в виде тонкой пленки на холодную подложку, бериллий становится сверхпроводником при температуре около 8 К.

БЕРИЛЛИЙ В ЦЕЛЕБНОМ СРЕДСТВЕ. В 1964 г. группа советских химиков во главе с вице-президентом Академии наук Таджикской ССР, доктором химических наук К. Т. Порошиным провела химический анализ древнего целебного средства «мумие». Оказалось, что это вещество сложного состава, причем в числе многих элементов, содержащихся в мумие, есть и бериллий.

ГЕОГРАФИЯ МЕСТОРОЖДЕНИЙ БЕРИЛЛИЯ. Бериллиевое сырье имеется во многих странах мира. Наиболее крупные месторождения его находятся в Бразилии и Аргентине. На их долю приходится примерно 40% добычи берилла в капиталистических странах. Значительные запасы бериллиевых руд имеются также в странах Африки и в Индии.

Вплоть до последнего времени крупнозернистый берилл добывали вручную. В Бразилии таким кустарным способом и сейчас ежегодно добывается до 3000 т концентрата.

Лишь недавно были предложены новые методы флотации, позволяющие использовать нерентабельные ранее месторождения мелкозернистого берилла.

БЕРИЛЛИЙ И «АТОМНАЯ ИГЛА». Теплоизоляционные свойства окиси бериллия могут пригодиться и при исследовании земных глубин. Так, существует проект взятия проб из мантии Земли с глубин до 32 км с помощью так называемой атомной иглы. Это миниатюрный атомный реактор диаметром всего 60 см. Реактор должен быть заключен в теплоизолирующий футляр из окиси бериллия с тяжелым вольфрамовым наконечником.

Принцип действия атомной иглы заключается в следующем: высокие температуры, создаваемые в реакторе (свыше 1100ºC), вызовут плавление скальных пород и продвижение реактора к центру Земли. На глубине примерно 32 км тяжелое вольфрамовое острие должно отделиться, а реактор, став более легким, чем окружающие его породы, возьмет пробы с недостижимых пока глубин и «всплывет» на поверхность.

БОР

«Нужно очень много знать, чтобы понять, как мало мы знаем». Вся история элемента № 5 — бора может служить подтверждением этого не слишком нового тезиса.

Было время, когда казалось, что об этом элементе известно все, что необходимо, хотя в действительности знали очень немного. А большего не требовалось: для промышленности бор не представлял интереса…

Лишь в последние десятилетия бор стал элементом первостепенной важности: и сам элемент № 5, и многие его соединения понадобились атомной и ракетной технике, металлургии, металлообработке, химической промышленности и многим другим отраслям. Сейчас бором и его соединениями занимаются в десятках научных лабораторий (и вряд ли этот интерес временный), а он задает одну загадку за другой.

Бура и буротвор

С одним из соединений бора человечество знакомо более тысячи лет. Это бура — натриевая соль тетраборной кислоты Na2B4O7∙10H2O. Известно, что еще в 800-х годах нашей эры это белое кристаллическое вещество применяли в качестве плавня. Бурой пользовались алхимики; как и сама алхимия, бура пришла в Европу с востока, от арабов. Известно, что много веков назад словом «борак» арабы обозначали многие соли и другие кристаллические вещества белого цвета. По мере того как прояснялась химическая природа веществ, понятие «борак» становилось все уже, и в конце концов его стали употреблять применительно только к одному веществу — буре. От арабского «борак» происходит латинское название буры — borax.

Несколько меньше «трудовой стаж» другого распространенного природного соединения бора — борной кислоты. В природе ее обнаружили в 1777 г., а получать из буры научились на 75 лет раньше. Бура и борная кислота это, если можно так выразиться, самые старые соединения элемента № 5. Они и сейчас используются довольно широко: в медицине, в производстве эмалей, как сырье для получения других соединений бора. Конечно, не бура и не H3BO3 определяют нынешний интерес науки и техники к бору, но эти вещества заслуживают почтительного отношения за свою многолетнюю службу человечеству. И открывали бор именно как неизвестный компонент этих известных веществ. И бором-то его назвали в честь буры. Интересно, что у нас в стране в начале прошлого века (1810 — 1815 гг.) этот элемент называли на русский манер бурием и буротвором. Лишь в 1815 г. известный химик В. М. Севергин ввел в русскую научную литературу нынешнее имя элемента № 5.

История открытий и ошибок

Бор открыт в 1808 г. Два известных французских ученых Жозеф Гей-Люссак и Луи Тенар «отняли» воду у борной кислоты и на полученный окисел подействовали металлическим калием. Новое вещество совершенно не походило на исходные продукты, и химизм процесса казался очевидным: 

кислота —прокаливание→ ангидрид —восстановление→ элемент.

С полным на то основанием Гей-Люссак и Тенар объявили об открытии нового элемента.

Спустя несколько месяцев бор открыли вторично. Великий английский химик Хэмфри Дэви получил его при электролизе расплавленного борного ангидрида.

На этом, казалось бы, можно закончить рассказ об история открытия элемента № 5, но одно обстоятельство не позволяет это сделать — сопоставление количественных характеристик элементного бора, полученных его первооткрывателями и современными учеными. Величины настолько разные, что кажется, будто речь идет о разных и притом не очень похожих веществах., и возникают сомнения в достоверности открытия бора в 1808 г.

Луи Жозеф Гей-Люссак (1778—1850) — французский физик и химик. Закон теплового расширения газов, открытый Гей-Люссаком в 1802 г., — один из основных законов физики. Менее известны химические исследования этого ученого. В 1811 г. он первым получил чистую синильную кислоту, в 1819 г. построил первые кривые растворимости солей в воде, а десятком лет раньше вместе с Тенором открыл новый элемент — бор 

В рассуждениях великих химиков прошлого века все абсолютно правильно, и тем не менее открытое ими вещество никак не назовешь элементным бором. Из-за большого сродства бора ко многим элементам, и прежде всего к кислороду, продукт, полученный Гей-Люссаком и Тенаром, не мог содержать более 60 — 70% бора. То же самое и у Дэви. Это доказал Анри Муассан — выдающийся французский химик второй половины XIX в. Он же в 1892 г. предложил магниетермический способ получения бора по реакции

B2O3 + 3Mg → 3MgO + 2В + 127 ккал.

Коричневый порошок, остававшийся после удаления окиси магния, Муассан счел элементным бором. Но оказалось, что и этот бор — далеко не элементный: бора и нем не больше 90%. Немецкий ученый-металлург В. Кролль усовершенствовал способ Муассана, но и он не смог поднять чистоту конечного продукта выше чем до 93 — 94%…

Помимо всего прочего, бор знаменит еще и тем, что портил нервы многим выдающимся химикам. В 1858 г. Ф. Вёлер и А. Сент-Клер Депнль установили, что этот элемент существует в двух модификациях: кристаллической — алмазоподобной и аморфной — похожей на графит. Это положение быстро стало общепризнанным, вошло в монографии и учебники.

1 ... 10 11 12 13 14 15 16 17 18 ... 130
Перейти на страницу:
На этой странице вы можете бесплатно скачать Популярная библиотека химических элементов. Книга первая. Водород — палладий - Коллектив авторов торрент бесплатно.
Комментарии