- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (ИН) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Лит.: Иванов Б. Т., Растровая стереоскопия в кино, М., 1945; Валюс Н. А., Растровая оптика, М., 1949; Иванов С.П., Иванов М. С., Быховский В. М. , Интегральная стереодиапроекция на ЭКСПО-70, «Техника кино и телевидения», 1970, № 10, с. 33—38.
С. П. Иванов.
Рис. 2. Схема образования интегральных фокальных зон растровым экраном с перспективным растром.
Рис. 1. Схема съёмки кинофильма интегральным методом: А — сверху вниз (в вертикальной плоскости); Б — в сторону (в горизонтальной плоскости); 1, 2, 3, 4 — центральные объекты композиции. Стрелками показаны пути перемещения съёмочного аппарата при съёмке в сторону (I) и сверху вниз (II); обоюдоострыми стрелками показан быстрый переход с одной визирной точки (центрального объекта) на другую.
Интегральные уравнения
Интегра'льные уравне'ния, уравнения, содержащие неизвестные функции под знаком интеграла. Многочисленные задачи физики и математической физики приводят к И. у. различных типов. Пусть, например, требуется с помощью некоторого оптического прибора получить изображение линейного объекта А , занимающего отрезок 0 £ x £ l оси Ox , причём освещённость объекта характеризуется плотностью u (x ). Изображение В представляет собой некоторый отрезок другой оси x 1 ; последний путём подходящего выбора начала отсчёта и единицы длины также можно совместить с отрезком 0 £ x 1 £ l . Если дифференциально малый участок (х , х + Dх ) объекта А вызывает освещённость изображения В с плотностью K (x1 , x )u (x )dx , где функция K (x 1 , x ) определяется свойствами оптического прибора, то полная освещённость изображения будет иметь плотность
В зависимости от того, хотят ли добиться заданной освещённости v (x 1 ) изображения или «точного» фотографического изображения [v (x ) = ku (x ), где постоянная k заранее не фиксируется], или, наконец, определённой разницы освещённости А и В [u (x ) — v (x ) = f (x )], приходят к различным И. у. относительно функции u (x ):
Вообще, линейным интегральным уравнением 1-го рода называется уравнение вида
линейным интегральным уравнением 2-го рода, или уравнением Фредгольма,—уравнение вида
[при f (x ) º 0 оно называется однородным уравнением Фредгольма]; обычно рассматриваются уравнения Фредгольма с параметром l:
Во всех уравнениях функция
— так называемое ядро И. у. — известна, так же, как функция f (x ) (а £ х £ b ); искомой является функция u (x ) (а £ х £ b ).
Функции K (x, y ), f (x ), u (x ) и параметр уравнения l могут принимать как действительные, так и комплексные значения. В частном случае, когда ядро K (x , y ) обращается в нуль при у > х , получается уравнение Вольтерра:
И. у. называется особым, если хотя бы один из пределов интегрирования бесконечен или ядро K (x , y ) обращается в бесконечность в одной или нескольких точках квадрата а £ х £ b, а £ y £ b или на некоторой линии. И. у. может относиться и к функциям нескольких переменных: таково, например, уравнение
Рассматриваются также нелинейные И. у., например уравнения вида
или
Линейные И. у. 2-го рода решаются следующими методами: 1) решение u (x ) получается в виде ряда по степеням l (сходящегося в некотором круге |l|<K ) с коэффициентами, зависящими от х (метод Вольтерра — Неймана); 2) решение u (x ), при тех значениях l, при которых оно вообще существует, выражается через некоторые целые функции от l (метод Фредгольма); 3) в случае, когда ядро симметрично, т. е. К (х , y ) º К (у , x ), решение u (x ) выражается в виде ряда по ортогональным функциям uк (х ), являющимся ненулевыми решениями соответствующего однородного уравнения
(последнее имеет отличные от нуля решения лишь при некоторых специальных значениях параметра l = lк , k = 1, 2, ...) (метод Гильберта — Шмидта); 4) в некоторых частных случаях решение сравнительно просто получается с помощью Лапласа преобразования ; 5) в случае, когда
(так называемое вырожденное ядро), отыскание u (х ) сводится к решению системы алгебраических уравнений. Приближённые решения можно получить, либо применив к какую-либо формулу численного интегрирования, либо заменив данное ядро К (х , y ) некоторым вырожденным ядром, мало отличающимся от К (х , у ). К И. у. часто сводятся краевые задачи для дифференциальных уравнений, обыкновенных и с частными производными; такое сведение имеет и теоретическую и практическую ценность.
Лит.: Смирнов В. И., Курс высшей математики, 3 изд., т. 4, М., 1957; Петровский И. Г., Лекции по теории интегральных уравнений, 3 изд., М., 1965; Канторович Л. В. и Крылов В. И., Приближённые методы высшего анализа, 5 изд., Л. — М., 1962.
Д. А. Васильков.
Интегральный логарифм
Интегра'льный логари'фм, специальная функция, определяемая интегралом
Этот интеграл не выражается в конечной форме через элементарные функции. Если х > 1, то интеграл понимается в смысле главного значения:
И. л. введён в математический анализ Л. Эйлером в 1768. И. л. li(x ) связан с интегральной показательной функцией Ei(x ) соотношением li(x ) = Ei(lnx ). Для больших положительных х функция li(x ) растет как x / lnx. И. л. играет важную роль в аналитической теории чисел, так как число простых чисел, не превосходящих х, приблизительно равно li(x ).
Лит.: Янке Е., Эмде Ф., Леш Ф., Специальные функции. Формулы, графики, таблицы, пер. с нем., 2 изд., М., 1968.
Интегральный синус и интегральный косинус
Интегра'льный си'нус и интегра'льный ко'синус — специальные функции, определяемые соответственно интегралами
Эти функции введены итальянским математиком Л. Маскерони в 1790. Однако ещё Л. Эйлеру (1781) было известно, что
Этот интеграл является простейшим примером сходящегося, но не абсолютно сходящегося несобственного интеграла. Функции Si(x ) и Ci(x ) встречаются в различных вопросах анализа и техники, и для них имеются подробные таблицы.
Лит. см. при ст. Интегральный логарифм .
Интегратор
Интегра'тор, то же, что интегрирующее устройство .
Интеграция (биол.)
Интегра'ция (биол.), процесс упорядочения, согласования и объединения структур и функций в целостном организме, характерный для живых систем на каждом из уровней их организации. Понятие «И.» ввёл английский учёный Г. Спенсер (1857), связав её с дифференциацией тканей в процессе эволюции и специализацией функций первоначально гомогенной, диффузно реагирующей живой материи. Примеры И. на молекулярном уровне организации: И. аминокислот в сложной молекуле белка, И. нуклеотидов в молекуле нуклеиновой кислоты; на клеточном уровне — оформление клеточного ядра, самовоспроизведение клеток в целом. В многоклеточном организме И. достигает высшего уровня, выражаясь в процессах его онтогенеза; при этом взаимосвязь частей и функций организма возрастает по мере прогрессивной эволюции; система корреляций усложняется, создаются регуляторные механизмы, обеспечивающие устойчивость и целостность развивающегося организма. На уровне сообществ — популяции, видов и биоценозов И. проявляется в сложной и взаимообусловленной эволюции этих биологических систем. Степень И. может служить показателем уровня прогрессивного развития любой живой системы.

