Категории
Самые читаемые
Лучшие книги » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ИС) - БСЭ БСЭ

Большая Советская Энциклопедия (ИС) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ИС) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 12 13 14 15 16 17 ... 139
Перейти на страницу:

Искровая камера

Искрова'я ка'мера, прибор для наблюдения и регистрации траекторий (треков) заряженных частиц. Широко используется для исследования ядерных частиц, ядерных реакций, элементарных частиц и космических лучей. В простейшем варианте И. к. представляет собой две плоскопараллельные пластины — электроды, пространство между которыми заполнено газом (чаще Не, Ne или их смесью). Площадь пластин от десятков см2 до нескольких м2. Одновременно с прохождением частицы или с некоторым запозданием (~ 1 мксек) на электроды И. к. подаётся от импульсного генератора короткий (10—100 нсек) высоковольтный импульс напряжения. В рабочем объёме И. к. создаётся сильное электрическое поле (5—20 кв/см). Импульс подаётся по сигналу системы детекторов (сцинтилляционные детекторы, черенковские счётчики и т. п.), выделяющих исследуемое событие. Электроны, возникшие вдоль траектории частицы в процессе ионизации атомов газа, ускоряются полем, ионизуют и возбуждают атомы газа (ударная ионизация). В результате на очень коротком пути образуются электронно-фотонные лавины, которые в зависимости от амплитуды и длительности импульса либо перерастают в видимый глазом искровой разряд, либо создают в газе локально светящиеся области небольшого объёма.

  Узкозазорная И. к. (расстояние между электродами ~1 см) обычно состоит из большого числа одинаковых искровых промежутков. Искровые разряды распространяются перпендикулярно электродам (рис. 1). Цепочка искр даёт направление траектории (рис. 2).

  В трековой И. к. (расстояние между электродами 3—50 см) искровой разряд точно следует в направлении траектории частицы. Электронно-фотонные лавины, развивающиеся от первичных электронов, в этом случае сливаются в узкий светящийся канал, идущий вдоль трека.

  В стримерной И. к. (расстояние между электродами ~ 5—20 см) лавины от электронов на треке развиваются независимо друг от друга и сопровождаются локальным свечением газа. При кратковременном импульсе (~10 нсек) напряжения между электродами И. к. удаётся получить достаточно яркие для фотографирования светящиеся каналы — стримеры, длиной от 3 до 10 мм (рис. 3а, 3б).

  И. к. позволяет, помимо траектории, в ряде случаев определять ионизующую способность частиц. Помещенная в магнитное поле И. к. служит для определения импульсов частиц по кривизне их траекторий (рис. 2). И. к. могут работать при очень интенсивных потоках заряженных частиц на ускорителях, так как время их памяти (время сохранения в объёме газа электронов ионизации) может быть уменьшено до 1 мксек. С другой стороны, И. к. способны работать с большой частотой, так как их мёртвое время (время восстановления камеры после срабатывания) составляет всего несколько мсек.

  Кроме фотографирования, в И. к. широко применяют другие методы съёма информации, позволяющие, в частности, передавать данные с И. к. непосредственно на электронные вычислительные машины (ЭВМ) и автоматически их обрабатывать. Например, в проволочных И. к., имеющих электроды в виде ряда тонких нитей, расположенных на расстоянии ~ 1 мм друг от друга, появление искры сопровождается разрядным током в близлежащей нити; эта информация позволяет определить координаты искры и может быть передана непосредственно на ЭВМ.

  В акустических И. к. с помощью установленных вне зазора пьезокристаллов улавливают ударную волну в газе, возникающую в момент искрового пробоя. Интервал времени между появлением искры и сигналом в пьезокристалле позволяет определить расстояние искры от кристалла, т. е. координаты искры. Здесь также часто осуществляют непосредственную связь пьезодатчиков с ЭВМ.

  Лит.: Искровая камера, М., 1967; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, [ч. 1]).

  М. И. Дайон.

Рис. 3б. Следы частиц в стримерной искровой камере.

Рис. 1. Схема узкозазорной искровой камеры (слева).

Рис. 3a. Следы частиц в стримерной искровой камере.

Рис. 2. Трек частицы в узкозазорной искровой камере (справа).

Искровой промежуток

Искрово'й промежу'ток, воздушный промежуток, разделяющий электроды в установках высокого напряжения. Различают защитные и отделительные И. п. Защитный И. п. предохраняет изоляцию от перенапряжений и воздействия электрической дуги. В нём (рис. 1, а) металлические электроды 1 и 2 включаются параллельно защищаемой изоляции. Изолятор не подвергается воздействию дуги, так как она горит в воздушном промежутке l (который меньше l1). По форме электродов защитные И. п. разделяются на стержневые (рис. 1, а) и кольцевые (рис. 1, б). Отделительный И. п. — основной элемент вентильного разрядника (см. Разрядник вентильный), ограждающий рабочее сопротивление РС разрядника (рис. 2, а) от воздействия номинального напряжения установки. Сопротивления R служат для выравнивания распределения напряжения по И. п. (ИП). Волна перенапряжения отводится в землю через рабочее сопротивление РС, дуга сопровождающего тока промышленной частоты (50 гц) гасится благодаря разбивке её на короткие дуги единичных И. п. (рис. 2, б). Отделительный И. п. группируется из 2, 4, 6 и т. д. единичных И. п. Воздушный промежуток единичного И. п. обычно около 1 мм; число их устанавливают из расчёта: один промежуток на 1 кв номинального напряжения установки.

Рис. 2. Вентильный разрядник: а — схема искрового промежутка; б — единичный искровой промежуток.

Рис. 1. Защитный искровой промежуток: а — стержневой; б — кольцевой.

Искровой разряд

Искрово'й разря'д, искра, одна из форм электрического разряда в газах; возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом — «треском» искры. В природных условиях И. р. наиболее часто наблюдается в виде молнии. И. р. в собственном смысле этого термина происходит, если мощность питающего его источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда. В этом случае одновременно с резким возрастанием разрядного тока напряжение на разрядном промежутке в течение очень короткого времени (от несколько мксек до нескольких сотен мксек) падает ниже напряжения погасания И. р., что приводит к прекращению разряда. Затем разность потенциалов между электродами вновь растет, достигает напряжения зажигания И. р. и процесс повторяется. В других случаях, когда мощность источника энергии достаточно велика, также наблюдается вся совокупность явлений, характерных для И. р., но они являются лишь переходным процессом, ведущим к установлению разряда другого типа — чаще всего дугового.

  И. р. представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвленных полосок — искровых каналов. Эти каналы заполнены плазмой, в состав которой в мощном И. р. входят не только ионы исходного газа, но и ионы вещества электродов, интенсивно испаряющегося под действием разряда. Механизм формирования искровых каналов (и, следовательно, возникновения И. р.) объясняется стримерной теорией электрического пробоя газов. Согласно этой теории, из электронных лавин, возникающих в электрическом поле разрядного промежутка, при определённых условиях образуются стримеры — тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Стримеры, удлиняясь, перекрывают разрядный промежуток и соединяют электроды непрерывными проводящими нитями. Происходящее затем превращение стримеров в искровые каналы сопровождается резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в нём скачкообразно повышается давление, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры (в случае молнии — гром).

  Величины, характеризующие И. р. (напряжение зажигания, напряжение погасания, максимальная сила тока, длительность), могут меняться в широких пределах в зависимости от параметров разрядной цепи, величины разрядного промежутка, геометрии электродов, давления газа и т. д. Напряжение зажигания И. р., как правило, достаточно велико. Градиент напряжения в искре понижается от нескольких десятков кв/см в момент пробоя до ~100 в/см спустя несколько микросекунд. Максимальная сила тока в мощном И. р. может достигать значений порядка нескольких сотен ка.

1 ... 9 10 11 12 13 14 15 16 17 ... 139
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская Энциклопедия (ИС) - БСЭ БСЭ торрент бесплатно.
Комментарии