- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
2a. Пространство. Время. Движение - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Уравнение это приближенное, потому что оно справедливо только для больших Q. За каждый радиан система теряет 1/Q часть запасенной энергии Е. Значит, за промежуток времени dt энергия уменьшится в (wdt/Q раз (частота появляется при переводе радианов в настоящие секунды). А какая это частота? Предположим, что система устроена очень жестко, поэтому даже при действии силы она сколько-нибудь заметно колеблется только со своей собственной частотой. Поэтому будем считать, что w — это резонансная частота w0. Таким образом, из уравнения (24.8) следует, что запасенная энергия меняется
следующим образом:
Теперь нам известно значение энергии в любой момент. Какой будет приближенная формула, определяющая амплитуду колебаний как функцию времени? Той же самой? Нет! Потенциальная энергия пружины изменяется как квадрат смещения, кинетическая энергия — как квадрат скорости; это приводит к тому, что полная энергия пропорциональна квадрату смещения. Таким образом, смещение (амплитуда колебаний) будет уменьшаться с половинной скоростью. Иначе говоря, мы ожидаем, что решение в случае затухающего переходного движения будет выглядеть как колебание с частотой, близкой к резонансной частоте w0; амплитуда этого колебания будет уменьшаться как ехр(-gt/2)
Эта формула и фиг. 24.1 дают представление о том, чего следует ожидать, а теперь приступим к точному анализу движения, т. е. к решению дифференциального уравнения движения.
Фиг. 24.1. Затухающие колебания.
Как же решить уравнение (24.1), если выкинуть из него внешнюю силу? Будучи физиками, мы интересуемся не столько методом, сколько самим решением. Поскольку мы люди уже опытные, попытаемся представить решение в виде экспоненциальной кривой, х=Аexp(iat). (Почему мы так поступили? Оттого, что экспоненту легче всего дифференцировать!) Подставим это выражение в (24.1), помня о том, что каждое дифференцирование х по времени сводится к умножению на ia [напомним, что F(t)=0]. Сделать это очень легко, и наше уравнение примет вид
( -a2+iga+w20)Аеiat=0. (24.11)
Левая часть равенства должна быть равна нулю все время, но это возможно только в двух случаях: а) А=0, однако это даже и не решение: ведь тогда все покоится, или б)
Если мы сможем решить это уравнение и найти a, то мы найдем и решение, амплитуда которого А не обязательно равна нулю!
Чтобы не думать о том, как извлечь квадратный корень, предположим, что g меньше w0, и поэтому w20-g2/4 — положительная величина. Беспокоит другое: почему мы получили два решения! Им соответствуют
и
Займемся пока первым решением, предположив, что мы ничего не знаем о том, что квадратный корень принимает два значения. В этом случае смещение х равно x1=Aexp(ia1t), где А — произвольная постоянная. Чтобы сократить запись, введем специальное обозначение для входящего в at квадратного корня:
Так, и , или, если воспользоваться замечательным свойством экспоненты,
Итак, система осциллирует с частотой wg , которая в точности не равна частоте w0, но практически близка к ней, если система достаточно добротна. Кроме того, амплитуда колебаний экспоненциально затухает! Если взять действительную часть (24.16), то мы получим
Это решение очень напоминает угаданное нами решение (24.10), вот только частота немного другая, wg. Но это лишь небольшая поправка, значит, первоначальная идея была правильной.
И все-таки не все благополучно! А не благополучно то, что существует второе решение.
Этому решению соответствует a2, и оно отличается от первого лишь знаком wg
Что все это значит? Скоро мы докажем, что если x1и х2— возможные решения (24.1) при F(t)=0, то х1+х2—тоже решение этого уравнения! Таким образом, общее решение имеет вид
Теперь можно спросить: «А, собственно, зачем нам беспокоить себя еще одним решением, если нас вполне устраивало первое? К чему эти дополнительные решения, если мы все равно должны взять только действительную часть?» Мы знаем, что нужно взять действительную часть, но откуда математика знает, что мы хотим взять действительную часть? Когда у нас была внешняя сила F(t), то мы ее дополнили искусственной силой, и она каким-то образом управляла мнимой частью уравнения. Но когда мы положили F(t)=0, то соглашение о том, что, каково бы ни было х, нужно взять только его действительную часть, стало нашим личным делом, и математическое уравнение об этом ничего не знало. В мире физики есть только действительные решения, но решение, которому мы так радовались, комплексно. Уравнению не известно, что мы делаем совершенно неожиданный шаг и отбираем только действительную часть, и оно предлагает нам еще, так сказать, комплексно сопряженное решение, чтобы, сложив оба решения, мы получили настоящее действительное решение; вот для чего мы взяли еще и a2. Чтобы х было действительным, Ввхр(-iwgt) должно быть комплексно сопряженным к Aexp(iwgt) числом, тогда мнимая часть исчезнет. Таким образом, В должно быть комплексно сопряжено с А, поэтому наше решение имеет вид
Значит, наши колебания — это колебания с фазовым сдвигом и, как полагается, с затуханием.
§ 3. Переходные колебания в электрических цепях
Посмотрим, как выглядят переходные колебания. Для этого соберем цепь, изображенную на фиг. 24.2.
Фиг. 24,2. Электрическая цепь для демонстраций переходных колебаний.
В этой цепи разность потенциалов между концами индуктивности L поступает в осциллоскоп. Неожиданное включение рубильника S включает дополнительное напряжение и вызывает в осцилляторной цепи переходные колебания. Эти колебания аналогичны колебаниям механического осциллятора, вызванными неожиданным ударом. Сама цепь представляет собой электрический аналог механического осциллятора с затуханием, и мы можем наблюдать колебания при помощи осциллоскопа. Он покажет нам кривые, анализом которых мы и займемся. На фиг. 24.3—24.6 представлены кривые затухающих колебаний, полученные на экране осциллоскопа. На фиг. 24.3 показаны затухающие колебания в цепи с большой Q, т. е. с малым значением g.
Фиг. 24.3. Затухающие колебания.
В такой цепи колебания затухают не очень быстро; мы видим довольно длинную синусоиду с медленно убывающим размахом.
Теперь давайте посмотрим, что произойдет, если мы будем уменьшать Q, так что колебания должны затухать быстрее. Чтобы уменьшить Q, увеличим сопротивление цепи R. При повороте ручки сопротивления колебания действительно затухают скорее (фиг. 24.4).
Фиг. 24.4. Колебания затухают быстрее.
Если еще увеличить сопротивление, то колебания затухнут еще быстрее (фиг. 24.5).
Фиг, 24.5. Колебания почти исчезли.
Но если сопротивление увеличить сверх некоторого предела, колебаний мы вообще не увидим. А может быть, нам просто отказывают глаза? Увеличим еще сопротивление и получим тогда кривую, представленную на фиг. 24.6; по ней можно лишь с натяжкой сказать, что в цепи произошли колебания, ну разве что одно.
Фиг. 24.6. Колебаний нет.
Можем ли мы математически объяснить это явление?
Сопротивление механического осциллятора, конечно, пропорционально g. В нашем случае g— это R/L. Теперь, если увеличивать g, то в столь приятных нам решениях (24.14) и (24.15) наступает беспорядок; когда g/2 становится больше w0, решения приходится записывать по-другому:

