- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
О чём не пишут в книгах по Delphi - А. Григорьев
Шрифт:
Интервал:
Закладка:
4.10. Еще немного теории
Теперь, познакомившись с синтаксическим анализом на практике, вернемся к теории и немного поговорим о типах грамматик и об альтернативных методах синтаксического анализа и вычисления выражений. Эти вопросы мы здесь рассмотрим только ознакомительно, а более детальное их описание можно найти в [6–8].
Грамматики языков по способу описания можно разделить на четыре типа, причем каждый следующий тип является подмножеством предыдущего.
1. Общие грамматики. Синтаксические правила в этих грамматиках имеют вид a ::= b, где а и b — произвольные цепочки из терминальных и нетерминальных символов (возможно, пустые). Единственное требование — хотя бы в одной из этих цепочек должен быть хотя бы один нетерминальный символ.
2. Контекстно-зависимые грамматики. Здесь правила имеют следующий вид a<X>b ::= acb, где а, b и c — произвольные цепочки терминальных и нетерминальных символов, <X> — некоторый нетерминальный символ. Таким образом, символ <X> может заменяться на последовательность символов c только в контексте цепочек a и b.
3. Контекстно-свободные грамматики. Это контекстно-зависимые грамматики, из которых убран контекст, т.е. правила записываются в виде <X> ::= с. В контекстно-свободных грамматиках нетерминальный символ <X> заменяется на цепочку c в любом контексте.
4. Регулярные (они же — автоматные) грамматики. Это контекстно-свободные грамматики, в которых запрещены любые формы рекурсивных определений.
Из этих определений легко сделать вывод, что в данной главе, пока мы не ввели в выражения скобки, наши грамматики относились к классу регулярных, а со скобками — к классу контекстно-свободных грамматик. Что же касается первых двух классов грамматик, то они неудобны ни для распознавания человеком, ни для написания анализаторов, поэтому данные грамматики применяются, в основном, только для описания естественных языков.
Регулярные грамматики описывают множество синтаксических правил, встречающихся в жизни, поэтому их часто применяют. Существует также альтернативный способ записи регулярной грамматики — регулярные выражения (мы их здесь рассматривать не будем). Различные библиотеки для распознавания регулярных выражений очень популярны, классы для распознавания регулярных выражений входят в .NET. Функция поиска в Delphi (меню Search/Find…. и т.п.) включает в себя возможности поиска последовательностей символов, заданных регулярным выражением (опция Regular expressions в диалоговом окне), поэтому краткое описание синтаксиса регулярных выражений можно найти в справке Delphi.
ПримечаниеРекурсии в регулярных выражениях очень не хватает, когда нужно описать, например, возможность бесконечной вложенности скобок. Поэтому в некоторых анализаторах к регулярным выражениям добавляется возможность описывать бесконечное вложение структур. Эти выражения строго говоря, уже не являются регулярными, хотя их обычно продолжают так называть.
С регулярными грамматиками тесно связаны конечные автоматы. Конечный автомат — это устройство (виртуальное), с входом, на который подаются данные, набором состояний и набором правил перехода из одного состояния в другое. Правила перехода определяются символами, подаваемыми на вход, и формулируются следующим образом: "Если автомат находится в состоянии А, и на вход поступил символ X, автомат переходит в состояние В". Таким образом, выражение посимвольно передается на вход конечного автомата, и каждый символ вызывает переход автомата из одного состояния в другое (допустима ситуация, когда символ оставляет текущее состояние неизменным). Если при поступлении очередного символа автомат не находит правила, которое определяет очередной переход, считается, что на вход подан некорректный символ, т.е. выражение ошибочно. Допустимость выражения определяется также тем, в каком состоянии оказывается автомат после того, как все выражение подано на его вход. Часть состояний считается допустимыми в качестве конечного состояния, часть — недопустимыми. Если по окончании своей работы автомат оказывается в недопустимом состоянии, выражение также признается ошибочным.
Можно доказать, что для каждой регулярной грамматики можно построить конечный автомат, и, наоборот, для каждого конечного автомата можно (построить регулярную грамматику. Именно поэтому регулярные грамматики напиваются также автоматными.
Конечный автомат очень наглядно представляется с помощью графа, углами которого служат состояния автомата, ребрами — переходы между состояниями. Каждое ребро помечается символами, при поступлении на вход которых этот переход становится возможным. На рис. 4.3 показан пример такого изображения конечного автомата, соответствующего грамматике вещественного числа. Кружки с одинарной границей изображают состояния, недопустимые в качестве конечного, с двойной границей — допустимые. До начала работы автомат находится в состоянии 0, каждый следующий символ переводит его в соответствующее состояние. Конечное состояние 1 соответствует числу без дробной части и экспоненты, состояние 3 — числу с дробной частью без экспоненты, состояние 6 — числу с экспонентой.
Рис. 4.3. Конечный автомат для грамматики вещественного числа
Контекстно-свободные автоматы не пригодны для распознавания контекстно-свободных грамматик с рекурсией. Для этого класса грамматик можно применить МП-автоматы (автоматы с магазинной памятью). Эти автоматы обладают стеком, и символ, поступающий на вход, не только определяет правило перехода, но и может быть сохранен в стеке, а правила перехода могут учитывать не только поступивший на вход символ, но и символ, лежащий на вершине стека. Если символ на вершине стека учитывается правилом, при применении этого правила символ извлекается из стека.
Главное достоинство МП-автоматов по сравнению с методом рекурсивного спуска (так называется метод построения синтаксического анализатора, который мы использовали) является то, что код автомата универсален и может быть применен к любому набору правил. Таким образом, появляется возможность создавать анализаторы, правила для которых хранятся, например, во внешнем файле или в базе данных, и грамматика может быть изменена без перекомпиляции анализатора. Недостатки МП-автоматов — малая наглядность кода и медленная работа из-за возможности захода в тупиковые ветки. Поэтому метод рекурсивного спуска применяется всегда, когда нет нужды менять грамматику во время работы программы.
В книге [6] описана интересная разновидность МП-автоматов — табличный анализатор, который в некоторых случаях может оказаться предпочтительнее метода рекурсивного спуска.
Арифметические выражения, которые мы разбирали в этой главе, записаны в привычной нам инфиксной форме, т.е. когда знак бинарной операции ставится между операндами. Кроме инфиксной, существует также префиксная и постфиксная формы записи выражения, в которых оператор записывается, соответственно, перед и после операндов. Например выражение "2+2" в префиксной форме запишется как "+2 2", в постфиксной — "2 2+". Префиксная форма называется польской записью, постфиксная — польской инверсной записью (в честь польского математика Яна Лукасевича, который разработал эти формы записи).
Достоинства префиксной и постфиксной форм записи — отсутствие скобок и одинаковый приоритет всех операций. Например, выражение "2+(2*2)" в постфиксной записи имеет вид "2 2 * 2 +", а выражение "(2+2)*2", соответственно, "2 2 + 2 *". Операции всегда выполняются в том порядке, в котором они следуют в выражении.
ПримечаниеПрефиксная запись имеет много общего принятым обозначением функций. Представим, что в некотором языке программирования нет встроенной инфиксной операции сложения, но есть функция +, которая принимает два аргумента и возвращает их сумму и аналогичные функции для других бинарных операторов. В привычной форме записи функций, когда аргументы заключаются в скобки, приведенное выражение будет выглядеть так "+(2, +(2, 2)". Теперь достаточно убрать из него скобки и запятые, чтобы получить префиксную запись выражения в классическом виде. Постфиксная запись получается из функциональной подобным образом, надо только ввести правило, что имя функции пишется не перед списком аргументов, а после него.
По своим выразительным возможностям постфиксная и префиксная записи равноценны, но при вычислении выражения, заданного префиксной записью, требуется рекурсивный алгоритм, а при вычислении выражения в постфиксной записи достаточно линейного алгоритма и стека, поэтому чаще встречается постфиксная форма. Алгоритм вычисления постфиксного выражения очень прост. Если очередная лексема — это число, кладем его в стек. Если очередная лексема — бинарный оператор, выталкиваем из стека два верхних значения, применяем к ним операцию и результат помещаем обратно в стек. Алгоритм легко обобщается на операторы с любым количеством операндов: соответствующая операция выталкивает из стека не два, а нужное ей число параметров. Функция от N аргументов рассматривается как операция, применяющаяся к N операндам.

