- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Психология критического мышления - Дайана Халперн
Шрифт:
Интервал:
Закладка:
Остановитесь и подумайте некоторое время над этой задачей. Она вам кажется сложной? Есть два подхода, которые сделают ответ простым и очевидным, но прежде чем вы продолжите чтение, решите, какие шаги предприняли бы вы для отыскания решения, и попробуйте найти его. Как вы уже вероятно догадались, правильное представление задачи обеспечит успех в ее решении.
Одно из решений состоит в построении графиков подъема и спуска монаха. Графики могут иметь произвольную форму, поскольку мы ничего не знаем о характере движения монаха. Примеры графиков подъема и спуска приведены на рис. 9.3.
Теперь наложите эти графики друг на друга и посмотрите, пересекаются ли они в какой-нибудь точке. Если такая точка существует, то это означает, что в каждый из двух дней монах побывал в ней в одно и то же время. Это показано на рис. 9.4. Построение графика сделало решение наглядным. В действительности существует еще более простое решение этой задачи, если изменить ее формулировку и представить условие в эквивалентной, но несколько другой форме. Предположим, двое людей идут по одной и той же горной тропе в одно и то же время и в одно и то же утро. Если один из них вышел из монастыря, а другой с вершины горы, оба начали движение в 6 часов утра и пришли в конечный пункт своего маршрута в 4 часа вечера, то очевидно, что где-то на тропе они должны были обязательно встретиться, независимо от того, как часто каждый из них останавливался передохнуть или подумать. Таким образом, при изменении формулировки сложная задача может превратиться в тривиальную.
-
Рис. 9.3. Графики подъема и спуска монаха.
Графики имеют произвольную форму, поскольку монах мог отдыхать, когда хотел, - как при подъеме на вершину, так и при спуске с нее.
Рис. 9.4. Накладывая друг на друга графики подъема и спуска, легко можно увидеть, что обязательно должно быть место, где они пересекаются. Таким образом, должно существовать место на горной тропе, которое монах пересекал в каждый из дней в одно и то же время.
Графическое изображение нередко является отличной стратегией решения задач. Несколько лет назад я проводила лабораторный курс экспериментальной психологии. Заключался он в следующем: студентам требовалось выполнить эксперименты, собрать данные и, переосмыслив их, предложить свою интерпретацию. И хотя студенты изучали статистические методы, необходимые для такой работы, я заметила, что они добивались гораздо большего понимания исследуемой задачи, если представляли полученные ими результаты в виде графиков. Это помогало им формулировать выводы на базе экспериментальных данных, поскольку они лучше понимали природу этих данных. Студенты обнаружили, что простейший график оказался значительно более эффективным средством для понимания задачи, чем разработанные статистические процедуры, к которым они должны были прибегнуть.
Особенно полезны графики и различные виды диаграмм для понимания стратегии решения математических и других точных задач. Например, есть известная задача из начального курса статистики, когда требуется отыскать площадь фигуры, ограниченной отрезком «колоколообразной» кривой нормального распределения между двумя заданными точками. Для студентов это может показаться сложной и непонятной задачей, но если они начертят кривую и заштрихуют область, площадь которой надо отыскать, задача значительно упростится. Я не даю своим студентам математических формул для отыскания необходимых площадей. Студентам проще вывести их самим, ориентируясь на построенные графики и рисунки.
Давайте рассмотрим геометрическую задачу, предложенную Кёлером (Kohler, 1969). В вашем распоряжении есть только данные, приведенные на рис. 9.5, и известно, что радиус окружности равен 5 см. Сможете ли вы определить длину отрезка L?
Одна из причин сложности этой задачи - ее данное графическое представление, когда отрезок L оказывается гипотенузой двух прямоугольных треугольников:
Рис. 9.5. Пользуясь лишь той информацией, которая приведена на рисунке, попробуйте определить длину отрезка L. (Источник: Kohler, 1969) треугольника со сторонами X, Д L и треугольника, образованного пересечением с линией L двух взаимно перпендикулярных радиусов. Как изменить этот рисунок, чтобы решение стало наглядным?
Рис. 9.6. В качестве дополнительного построения для нахождения решения задачи (рис. 9.5) проведены радиусы. Можете ли вы теперь определить длину отрезка L?
Проанализируйте данную информацию. Поскольку единственным заданным на рисунке линейным размером является радиус окружности, то, вероятно, он потребуется для решения задачи. Попробуйте начертить дополнительные радиусы внутри окружности, как это показано на рис. 9.6. Может, это поможет вам предложить вариант решения?
Посмотрите внимательно на квадрант, содержащий отрезок L. Можете ли вы найти другой отрезок, равный по длине L? Если вы представите отрезок L как диагональ прямоугольника со сторонами X, D и необозначенными сторонами, являющимися отрезками горизонтального и вертикального радиусов, то другая диагональ этого прямоугольника должна равняться по длине L. В то же время другая диагональ является не чем иным, как радиусом; таким образом, длина отрезка L равна радиусу и тоже составляет 5 см. Хотя первоначальное представление задачи вводило в заблуждение, с помощью дополнительных построений решение найдено.
Конечно, сразу не было ясно, что построение дополнительных радиусов окружности приведет к решению задачи. Но тем не менее было очевидно, что ответ в любом случае будет зависеть от радиуса, поскольку он является единственным данным размером, а цель заключалась в нахождении длины отрезка L. Те действия, которые вы предприняли, чтобы трансформировать данные задачи по ходу ее решения, повлекли за собой уяснение сути задачи. Но если бы вы не знали, что диагонали прямоугольника равны, вы не смогли бы решить задачу. Люди, успешно решающие задачи, накапливают солидный багаж знаний, который пополняется на протяжении всего периода обучения - причем это происходит как в учебном заведении, так и за его пределами. Залог успешного решения задач - это обширные знания во многих областях жизни.
Попробуем решить другую задачу, в которой поиск пути решения задачи также должен сопровождаться графическим представлением.
Мелвин, Брок, Марк и Клэр, чтобы сэкономить деньги и сохранить душевное спокойствие, решили организовать кооператив по присмотру за детьми. Они договорились сидеть с детьми друг друга на следующих условиях: если один из них остается с чьими-то детьми, то последний должен «заплатить» за это таким же количеством часов присмотра за чужими детьми. Подсчитывать баланс времени, которое каждый из них проработал «приходящей нянькой», они решили в конце месяца. Оказалось, что в течение месяца Мелвин сидел с детьми Брока 9 часов, Марк сидел с детьми Мелвина 3 часа, а Клэр оставалась с детьми Мелвина 6 часов. Марк 9 часов нянчился с детьми Клэр, и Брок 5 часов следил за ее детьми. Кто кому должен 12 часов отработки?
Очевидно, что хорошая схема, отражающая связи между этими людьми, просто необходима. Соответствующие данные помогут связать этих четверых с количеством часов, которые они должны друг другу. Начнем с первого предложения: «Мелвин сидел с детьми Брока 9 часов». Таким образом, Брок должен Мелвину в конце месяца 9 часов. При этом используется операция перевода количества часов, затраченных на присмотр за ребенком, в количество часов, «полученных» каждой «нянькой». Простейшая схема этого процесса имеет вид:
Следующая фраза трансформируется так: «Мелвин должен 3 часа Марку и 6 часов Клэр».
Затем, преобразовав третью фразу, мы получим: «Клэр должна Марку 9 часов и Броку5 часов».
Рис. 9.7. Альтернативная форма представления задачи кооператива по уходу за детьми
Легко видеть из построенной схемы, что только Марку должны быть возвращены 12 часов присмотра за детьми - 3 часа от Мелвина и 9 часов от Клэр. Эта схема является необходимой частью решения поставленной задачи.
Существует несколько других способов представления информации в задаче о кооперативе по присмотру за детьми, которые отражают все существующие связи и таким образом позволяют получить правильный ответ. Когда моя коллега (д-р Сюзанна Намедэл из Калифорнийского государственного университета, Лонг-Бич) поставила эту задачу перед своими студентами, она обнаружила, что они в ходе поиска решения изобрели самые разные формы ее наглядного представления. Один из студентов использовал простейшую диаграмму, изображающую количество часов, затраченных каждым из участников. Представление условий задачи в такой форме приведено на рис. 9.7.

