Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение - Митио Каку
Шрифт:
Интервал:
Закладка:
За прошедшие с тех пор века появлялось немало математиков, с пеной у рта отвергавших четвертое измерение. В 1685 г. Джон Уоллис (Валлис) высказывался против этой концепции, называя ее «Чудовищем в мире природы, еще менее возможным, чем химера или кентавр… Длина, ширина и высота исчерпывают пространство. Никакому воображению не под силу представить четвертое пространственное измерение помимо этих трех»{8}. В течение нескольких тысяч лет математики повторяли эту роковую ошибку: что четвертое измерение не существует по той причине, что мы не в состоянии вообразить его себе.
Единство всех физических законов
Решительное отступление от евклидовой геометрии произошло, когда Гаусс поручил студенту Риману подготовить доклад об «основах геометрии». Гаусс всерьез заинтересовался вопросом, сумеет ли его ученик разработать альтернативу евклидовой геометрии. (За несколько десятилетий до этого Гаусс сам в личных беседах выражал всяческие сомнения относительно евклидовой геометрии. Он даже упоминал в разговорах с коллегами гипотетических «книжных червей», живущих исключительно в двумерном пространстве. Он говорил, что это распространяется на геометрию многомерного пространства. Но будучи крайне консервативным человеком, Гаусс никогда не публиковал своих работ по многомерности, зная, какой взрыв негодования они вызовут у ограниченной, реакционно настроенной «старой гвардии». Гаусс презрительно окрестил их «беотийцами» – по названию одной из народностей Греции, представителей которой считали умственно недоразвитыми{9}.)
Риман был в ужасе. Этого застенчивого, робкого человека, впадающего в панику при мысли о публичных выступлениях, наставник попросил прочитать перед целым факультетом доклад об одной из самых сложных математических проблем столетия.
Следующие несколько месяцев Риман усердно разрабатывал теорию многомерности, напрягая все свои силы и находясь на грани нервного срыва. И без того плачевное положение усугублялось финансовыми проблемами. Чтобы обеспечивать близких, ему приходилось заниматься низкооплачиваемым репетиторством. Кроме того, Риман был вынужден отвлекаться на поиски объяснения физических проблем. Особенно часто он помогал профессору Вильгельму Веберу проводить эксперименты в новой увлекательной сфере – исследованиях электричества.
Конечно, электричество было известно и в древности – в виде искр и молний. Но в начале XIX в. это явление заняло центральное место в исследованиях физиков. В частности, внимание ученых привлекло то, что при прохождении тока по проводу, лежащему поверх компаса, стрелка компаса приводится в движение. И наоборот: движение магнитного стержня относительно провода может вызвать возникновение электрического тока в проводе. (Это явление называется законом Фарадея, на его принципах основаны все современные электрогенераторы и трансформаторы, следовательно, во многом он определяет основы современной техники и технологии.)
С точки зрения Римана, этот феномен указывал на то, что электричество и магнетизм – проявления одной и той же силы. Вдохновленный новыми открытиями, Риман был убежден, что мог бы дать математическое объяснение, способное объединить электричество и магнетизм. Он с головой ушел в работу в лаборатории Вебера, уверенный, что с помощью математики удастся добиться полного понимания действия этих сил.
Но, поскольку Риман был обременен подготовкой к публичному докладу о «началах геометрии», обеспечением семьи и проведением научных экспериментов, здоровье в конце концов подвело его, и в 1854 г. он пережил нервный срыв. Позднее он писал отцу: «Исследования единства всех физических законов настолько увлекли меня, что, когда тема пробного доклада была мне объявлена, я насилу оторвался от исследовательской работы. Затем, отчасти из-за размышлений о ней, отчасти ввиду постоянного пребывания в помещении в эту скверную погоду, я занемог»{10}. Это письмо имеет большое значение, так как ясно свидетельствует, что даже во время многомесячной болезни Риман твердо верил, что откроет «единство всех физических законов» и что математика со временем проложит путь к этому объединению.
Сила = геометрия
Несмотря на постоянные болезни, Риман в конечном счете изменил бытующие представления о значении силы. Еще со времен Ньютона ученые считали силу мгновенным взаимодействием удаленных друг от друга тел. Физики называли ее «дальнодействием», это означало, что некое тело способно оказывать мгновенное влияние на движение удаленных от него тел. Безусловно, ньютонова механика могла описать движение планет. Но на протяжении веков критики утверждали, что «дальнодействие» не является естественным, так как оно означало бы, что одно тело способно менять направление движения другого без соприкосновения с ним.
Риман предложил совершенно новую физическую картину. Ему представилось племя двумерных существ, подобных «книжным червям» Гаусса и живущих на листе бумаги. Но в отличие от Гаусса Риман населил этими «книжными червями» скомканный лист бумаги{11}. Что должны думать такие существа о мире, в котором они живут? Риман сообразил, что, с их точки зрения, этот мир остается совершенно плоским. Так как тела этих книжных червей тоже искривлены, они и не замечают, что их мир искажен. Однако Риман утверждал: при попытке переместиться по этому скомканному листу бумаги книжные черви ощутят воздействие таинственной, незримой силы, которая помешает им ползти по прямой. Им придется отклоняться вправо или влево каждый раз, когда впереди окажется очередная складка листа.
Таким образом, Риман сделал первое за 200 лет значимое отступление от принципов Ньютона, отказался от принципа воздействия на расстоянии. По Риману, сила – следствие геометрии.
Затем Риман заменил двумерный лист бумаги нашим трехмерным миром, «cмятым» в четвертом измерении. Деформации нашей Вселенной неочевидны для нас. Но мы сразу почувствуем некий подвох, когда попытаемся идти по прямой. Мы будем двигаться словно во хмелю, как будто незримая сила тянет нас, толкает то вправо, то влево.
Риман пришел к выводу, что электричество, магнетизм и гравитация вызваны деформацией нашей трехмерной Вселенной в незримом четвертом измерении. Таким образом, сила не может существовать самостоятельно и независимо, а представляет собой лишь видимое следствие искажения геометрии пространства. Введя в рассуждения четвертое пространственное измерение, Риман случайно наткнулся на тему, которая стала одной из господствующих в современной теоретической физике, – явное упрощение законов природы в категориях многомерного пространства. И Риман приступил к работе над математическим языком, пригодным для выражения этой идеи.
Метрический тензор Римана: новая теорема Пифагора
Риману понадобилось несколько месяцев, чтобы оправиться от последствий нервного срыва. Его доклад, наконец прочитанный в 1854 г., приняли с воодушевлением. В ретроспективе это был, бесспорно, один из наиболее выдающихся публичных докладов в истории математики. По Европе быстро распространилось известие, что Риман решительно сбросил оковы евклидовой геометрии, которой математики подчинялись на протяжении двух тысячелетий. О докладе вскоре узнали во всех центрах образования Европы, вклад Римана в математику приветствовали повсюду в научных кругах. Доклад Римана перевели на несколько языков, он произвел фурор в математике. К евклидовой геометрии раз и навсегда перестали относиться так, как прежде.
Суть выдающегося труда Римана, как и суть многих величайших работ в области физики и математики, уловить довольно просто. Риман начал со знаменитой теоремы Пифагора, одного из важнейших достижений древнегреческих математиков. Эта теорема устанавливает соотношения между длинами сторон прямоугольного треугольника. Согласно ей, сумма квадратов коротких сторон, катетов, равна квадрату длинной стороны, гипотенузы; если a и b – длины катетов, а с – длина гипотенузы, тогда а² + b² = с². (Естественно, теорема Пифагора лежит в основе всей архитектуры; все сооружения на планете построены с ее учетом.)
Эту теорему легко сформулировать для трехмерного пространства. Она гласит, что сумма квадратов трех смежных сторон куба равна квадрату его диагонали; или если а, b и с – стороны куба, а d – его диагональ, тогда a² + b² + c² = d² (рис. 2.1).
Теперь так же просто можно сформулировать ту же теорему для N-мерного пространства. Представим себе N-мерный куб. Если a, b, c… – длины сторон «гиперкуба», а z – длина его диагонали, тогда a² + b² + c² + d² +… = z². Примечательный момент: хотя наш мозг не в состоянии представить N-мерный куб, формулу для его сторон и диагонали записать несложно. (Это типичная особенность работы с гиперпространством. С математической точки зрения манипулировать N-мерным пространством не труднее, чем трехмерным пространством. Поразительно, как на простом листе бумаги можно математически описать свойства многомерных объектов, которые не в силах вообразить наш мозг.)