- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан
Шрифт:
Интервал:
Закладка:
91
У читателя может возникнуть вопрос, каким образом с помощью струны, намотанной вокруг циклического измерения радиусом R, можно измерить значение радиуса 1/ R. Хотя этот вопрос совершенно правомерен, ответ на него, в действительности, заключается в том, что сам вопрос сформулирован некорректно. Когда мы говорим, что струна намотана на окружность радиуса R, мы с необходимостью используем определение расстояния (чтобы фраза «радиус R» имела смысл). Однако этоопределение расстояния относится к модам ненамотанной струны, т. е. к колебательным модам. С точки зрения этого определения расстояния (и только этого!) конфигурация намотанной струны выглядит так, что струна обёрнута вокруг циклической компоненты пространства. Однако с точки зрения другого определения расстояния, соответствующего конфигурациям намотанных струн, топологические моды точно так же локализованы в пространстве, как и колебательные моды с точки зрения первого определения, и радиус, который они «видят», равен 1/ R, что и отмечено в тексте.
Эти пояснения дают некоторое представление о том, почему расстояния, измеренные с помощью намотанных и ненамотанных струн, обратно пропорциональны друг другу. Однако, так как данный момент достаточно тонкий, возможно, имеет смысл привести технические подробности для читателя, склонного к математическому образу мышления. В обычной квантовой механике точечных частиц расстояние и импульс (по существу, энергия) связаны преобразованием Фурье. Иными словами, собственный вектор оператора координаты
на окружности радиусом Rможно определить как
, где p= υ/ R, а
есть собственный вектор оператора импульса (прямой аналог того, что мы называли общей колебательной модой струны — движение без изменения формы). В теории струн, однако, есть ещё один собственный вектор оператора координаты
, определяемый состояниями намотанной струны:
, где
— собственный вектор для намотанной струны с
. Из этих определений немедленно следует, что xпериодична с периодом 2 πR, а
периодична с периодом 2 π/ R, так что xесть координата на окружности радиусом R, а
— координата на окружности радиусом 1/ R. Более конкретно, можно рассмотреть два волновых пакета
и
, распространяющихся из начала координат и эволюционирующих во времени, с помощью которых можно дать практическое определение расстояния. Радиус окружности, измеренный с помощью каждого из пакетов, будет пропорционален времени возвращения пакета в исходную точку. Так как состояние с энергией Eэволюционирует с фазовым множителем, пропорциональным Et, видно, что время, а, следовательно и радиус, равны t~ 1/ E~ Rдля колебательных мод и t~ 1/ E~ 1/ Rдля топологических мод.
92
Для читателя, сведущего в математике, отметим, что число семейств колебательных мод струны равно половине абсолютного значения эйлеровой характеристики многообразия Калаби–Яу, как указано в примечании {83} . Эта величина равна абсолютному значению разности h 2,1и h 1,1, где h p, qобозначает число Ходжа ( p, q). С точностью до константы эти значения равны числу нетривиальных гомологий 3-циклов (трёхмерных отверстий) и числу гомологий 2-циклов (двумерных отверстий). Таким образом, хотя в основном содержании говорится о полном числе отверстий, более точный анализ показывает, что число семейств зависит от абсолютного значения разности между числами чётномерных и нечётномерных отверстий. Выводы, однако, те же самые. Например, если два пространства Калаби–Яу отличаются перестановкой соответствующих чисел Ходжа h 2,1и h 1,1, то число семейств частиц — полное число отверстий — не изменится.
93
Название объясняется тем, что «ромбы Ходжа», математические выражения чисел отверстий различных размерностей для пространств Калаби–Яу, являются зеркальными отражениями друг друга для каждой зеркальной пары.
94
Термин зеркальная симметрияиспользуется в физике и в других контекстах, совершенно не связанных с данным, например, в связи с понятием киральности, т. е. в связи с вопросом о том, является ли Вселенная инвариантной относительно замены правого на левое (см. примечание {64} ).
95
Для читателя, склонного к математической строгости рассуждений, будет понятно, что вопрос состоит в том, является ли топология пространства динамической, т. е. может ли она меняться во времени. Отметим, что хотя представление о динамических изменениях топологии часто используется в этой книге, на практике обычно рассматривается однопараметрическое семейство пространственно-временныхмногообразий, чья топология меняется при изменении параметра семейства. Формально этот параметр не является временем, но в определённом контексте может с ним отождествляться.
96
Для математически подкованного читателя отметим, что процедура включает сдутие рациональных кривых на многообразии Калаби–Яу. Далее используется тот факт, что при определённых условиях образовавшаяся сингулярность может быть устранена серией последовательных раздутий.
97
K. C. Cole, «New York Times Magazine», October 18, 1987, p. 20.
98
Цитируется по книге: John D. Barrow, «Theories of Everything». New York: Fawcett-Columbine, 1992, p. 13. (В рус. пер. цитата есть в книге: Кузнецов Б. Г. «Эйнштейн: Жизнь. Смерть. Бессмертие». М.: Наука, 1980, с. 363.)
99
Кратко поясним различия между пятью теориями струн. Для этого отметим, что колебательные возбуждения вдоль струнной петли могут распространяться по часовой стрелке и против неё. Теории струн типов IIA и IIB отличаются тем, что в последней теории колебания в обоих направлениях идентичны, а в первой теории противоположны по форме. Противоположностьв данном контексте имеет точный математический смысл, но нагляднее всего её можно представлять в терминах вращений колебательных мод в каждой теории. В теории типа IIB оказывается, что все частицы вращаются в одном направлении (у них одна и та же киральность), а в теории типа IIA — в разных направлениях (у них разная киральность). Тем не менее, в каждой теории реализуется суперсимметрия. Две гетеротические теории имеют аналогичные, но более эффектные отличия. Все моды колебаний по часовой стрелке выглядят так же, как и моды струн типа II (если рассматривать только колебания по часовой стрелке, то теории струн типов IIA и IIB идентичны), но колебания против часовой стрелки совпадают с колебаниями исходной теории бозонных струн. Хотя в бозонных струнах возникают неразрешимые проблемы, если рассматривать их колебания в обоих направлениях, в 1985 г. Дэвид Росс, Джеффри Харви, Эмиль Мартинек и Райан Ром (все они в то время работали в Принстонском университете и их прозвали «Принстонский струнный квартет») показали, что при использовании этих струн в комбинации со струнами типа II получается вполне согласованная теория. Однако в этом союзе была странная особенность, известная со времён работ Клода Лавлейса из университета Ратчерса 1971 г. и Ричарда Броуэра из Бостонского университета, Питера Годдарда из Кембриджского университета и Чарльза Торна из Гейнсвилльского университета (штат Флорида) 1972 г. А именно, для бозонной струны требовалось 26 пространственно-временных измерений, а для суперструны, как обсуждалось, требовалось 10. Так что гетеротические струны (от греческого ετερος, т. е. разный) являются странными гибридами, в которых колебательные моды против часовой стрелки живут в 26 измерениях, а колебательные моды по часовой стрелке — в 10! Пока читатель окончательно не запутался, пытаясь понять этот странный союз, сообщим ему о работе Гросса и его коллег, в которой было показано, что 16 лишних бозонных измерений должны скручиваться в одно из двух торообразных многообразий очень специального вида, приводя к теориям O- и E-гетеротических струн. Так как 16 добавочных бозонных измерений компактифицированы, каждая из этих теорий ведёт себя так, как если бы в ней было 10 измерений, т. е. как теории струн типа II. В гетеротических теориях также реализован свой вариант суперсимметрии. И, наконец, теория типа I аналогична теории IIB, за исключением того, что помимо замкнутых струн, рассмотренных в предыдущих главах, в ней имеются струны со свободными концами, называемые открытыми струнами.

