Пуанкаре - Алексей Тяпкин
Шрифт:
Интервал:
Закладка:
Начиная с 1890 года Пуанкаре публикует целую серию статей по теории опытов Герца, показавших существование предсказанных Максвеллом электромагнитных волн и возможность их получения с помощью простых приборов. А в 1899 году выходит в свет его книга «Теория Максвелла и герцевские колебания. Беспроволочная телеграфия». В этой работе, учитывая стремление широких кругов практиков приобщиться к физическим основам беспроволочной телеграфии и высокочастотных электрических колебаний, он в элементарной форме, без всяких расчетов разъясняет наиболее трудные вопросы. Как и других физиков, Пуанкаре интересует задача распространения волн вдоль проводов. Сам Герц решал ее в предположении бесконечно тонкого проводника. Такие известные ученые, как Д. Д. Томсон, лорд Рэлей, Друде и Пуанкаре, пытаются найти решение для более реальной задачи, в которой учитывается толщина провода. Пробовали было рассматривать электромагнитные волны по аналогии со звуковыми и световыми, но получили явное противоречие с опытом. Пуанкаре первый указал, что противоречия объясняются затуханием волн телеграфии. Причем затухание это вызвано двумя причинами: расходами энергии волны на излучение и на тепловой нагрев провода. Опыты как будто бы свидетельствовали, что преобладает второй механизм затухания.
Наибольшего успеха в этих теоретических исследованиях добиваются лорд Рэлей и Пуанкаре. Они рассматривают явление с общих позиций теории Максвелла, отводя основную роль изменению электромагнитного поля и влиянию на него проводников и заряженных диэлектриков. Это был совершенно новый подход для электротехников того времени, привыкших иметь дело лишь с расчетами разности потенциалов и силы тока в замкнутых электрических цепях с определенными сопротивлениями, индуктивностями и емкостями. Кирхгоф, один из основателей этой теории электрических цепей, применив старый проверенный метод и даже не принимая во внимание электромагнитное поле вокруг проводника, получил «телеграфное уравнение», описывающее распространение электромагнитных колебаний вдоль линии. Пуанкаре тоже вывел «телеграфное уравнение», но уже с чисто максвелловской точки зрения, имея дело с электромагнитными волнами вне проводника. Но его более строгий и более глубокий метод не выдержал конкуренции с методом Кирхгофа, хотя на основании этого метода лорд Рэлей еще до 1900 года предсказал техническое использование волноводов. Инженеры-электротехники предпочли более простой и более привычный им подход теории электрических цепей, отказавшись от всех богатств более тонкой, но более сложной теории. Они уподобились тому эфору из древней Спарты, который сорвал с музыкального инструмента две дополнительно введенные струны. Ему было неважно, что инструмент усовершенствован и дает новые аккорды. Он жаждал вернуться к привычному.
К тому же радиотехника вскоре облюбовала длинные волны, для которых классическая теория XIX века давала весьма удовлетворительную картину явлений, происходящих в приемниках и передатчиках, и представляла все результаты в знакомой и наглядной форме. Даже для расчета антенн и фидеров старая теория была вполне приемлемой. Почти тридцать лет все монографии и учебные пособия пропагандировали исключительно теорию электрических цепей, теорию прошлого века. Несколько поколений инженеров воспитывались на этих классических методах, не зная более строгих и точных. Лишь с развитием техники сверхвысоких частот, имевшей дело с дециметровыми и миллиметровыми волнами, проявилась несостоятельность широко применяемых теоретических средств. Только тогда обратились к уравнениям электромагнитного поля и к более сложным математическим методам. Пуанкаре смотрел слишком далеко вперед, его теория намного опережала происходящие события. В этом была ее сила, в этом была и ее слабость.
Еще одна его математическая формула завтрашнего дня была получена в исследованиях дифракции радиоволн проводящей сферой. Пуанкаре пытался объяснить явление распространения радиосигналов на большие расстояния. В мемуаре 1909 года он выводит основную формулу теории распространения радиоволн, устанавливающую закон угасания сигнала по мере удаления от источника колебаний. Математический метод, с помощью которого автор пришел к этому результату, вызвал оживленный обмен мнениями на страницах различных научных журналов того времени. Но только в середине XX века формула Пуанкаре для амплитуды дифрагированной волны была окончательно подтверждена исследованиями Ватсона.
Некоторые свои статьи Пуанкаре посвящает вопросу об униполярной индукции, вызвавшей в то время нескончаемые споры, методам расчета периода вибратора, истолкованию явления множественного резонанса, казавшегося весьма парадоксальным. В 1910 году он занимается разработкой способа передачи сигналов времени на корабли, находящиеся в открытом море. Это позволило бы отказаться от дорогих и сложных в эксплуатации хронометров. Вклад его в новую отрасль техники заслуженно оценен современниками. Французское правительство доверило ему председательство в межведомственной комиссии, которая должна была координировать применение беспроволочной телеграфии.
Аппель, знавший своего знаменитого друга с юношеских лет, утверждал, что Пуанкаре достиг бы высоких успехов в любой области человеческой деятельности, которую бы он избрал. Ему вторит Дарбу. Французский математик Адамар считает такой универсализм проявлением некоторой общей закономерности. «Более чем сомнительно, что существует единственная ярко выраженная „математическая способность“, — пишет он. — Математическое творчество и математический ум не могут быть безотносительны к творчеству вообще и к уму вообще. Редко бывает, чтобы первый математик в лицее был последним в других науках. И, рассматривая вещи на более высоком уровне, отметим, что большая часть великих математиков творила и в других областях науки».
Пуанкаре мог бы быть историком, философом, романистом, географом, а может быть, и натуралистом. Он предпочел стать математиком, механиком, физиком, астрономом; предпочел разрабатывать фуксовы функции и качественные методы дифференциальных уравнений, исследовать фигуры равновесия вращающейся жидкости и движение небесных тел, создавать топологию и теорию относительности, обосновывать принцип Дирихле и развивать теорию морских приливов, принимать участие в геодезических исследованиях и творить в области беспроволочной телеграфии. Могло бы показаться, что он безвольно предается всем влечениям своего ума, наслаждаясь непостоянством предмета своих ученых занятий. Могло бы, если не принимать во внимание глубину разработки проблем и фундаментальность достигнутых результатов, если позабыть о нечеловеческом, напряженнейшем труде, ежедневном, ежечасном, ежеминутном.
(adsbygoogle = window.adsbygoogle || []).push({});