- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Расследование и предупреждение техногенных катастроф. Научный детектив - Юрий Петров
Шрифт:
Интервал:
Закладка:
(20)
а при ε < 0 устойчивость сохраняется. Исключение переменных х и х из уравнения (10), (12), (13) при правильном учете реальных связей между «дрейфом» параметров в технической системе является примером эквивалентного преобразования, изменяющего свойство сохранения устойчивости при дрейфе параметров.
Формула (19) раскрывает еще одно опаснейшее и очень коварное свойство технических объектов, спроектированных по привычным методикам, без учета новых явлений, открытых в СПбГУ: при изготовлении любого технического устройства малые отклонения реальных параметров (а значит, и коэффициентов математической модели) от расчетных значений неизбежны, но знак этих отклонений не предсказуем. Вполне может оказаться, что реальная величина параметра будет меньше расчетной, т.е. окажется, что ε < 0. Тогда изготовленное устройство окажется устойчивым и нормально работающим. Оно будет иметь малый запас устойчивости — но на испытаниях реального устройства запас устойчивости проверить чаще всего невозможно (обычно рекомендуемое «покачивание параметров» редко помогает — о причинах этого подробно рассказано в [2]). Поэтому изготовленное устройство будет признано хорошим и может быть установлено, например, на самолете как одна из его многочисленных систем. Устройство будет исправно работать не предсказуемое заранее время — до тех пор, пока при неизбежном в ходе эксплуатации «дрейфе» параметров устройство потеряет устойчивость, «пойдет в разнос» и вызовет аварию, которая может перерасти в катастрофу, с гибелью пассажиров и экипажа.
Подобные аварии происходят не каждый день, а несколько реже только потому, что «особые» системы и устройства, для которых привычные методы расчета дают неверные данные о запасах устойчивости, встречаются не очень часто. Но мириться с авариями нельзя, а предотвращать их можно только проверкой технической документации самолетов на основе методов, разработанных в СПбГУ и «Военмехе».
Формулы (19) и (20) иллюстрируют основные черты аварий, произошедших именно по причине неполноты привычных методов расчета, о которых уже говорилось в параграфе 8: благодаря наличию быстро растущего члена (20) в переходном процессе, авария развивается очень быстро; если же она не привела к гибели самолета, то через некоторое время малый «дрейф» параметров может привести к тому, что малое ε > 0 превратится в малое ε < 0 и устройство снова будет работать нормально (хотя малый запас устойчивости сохранится). Мы убеждаемся, что это те самые особенности, которые проявились у аварий над Междуреченском и Бухарестом, о которых говорилось в параграфе 8.
Мы убеждаемся, что научное исследование разъясняет загадочные особенности аварий, ранее казавшиеся очень странными. Заметим, что при исключении части переменных (широко используемом при «аналитическом конструировании» регуляторов) выход системы на границу устойчивости происходит при любых значениях коэффициентов. Это объясняет, почему в 60-е годы аварии с «аналитически сконструированными» регуляторами происходили так часто. Затем структуру регуляторов изменили и аварии стали реже, но не прекратились совсем. Для полного прекращения опасных аварий, связанных с неполнотой привычных методов расчета, нужно использовать дополнительные проверки, описанные в книгах [1], [2], [7].
§ 11. Существуют ли в математике предрассудки?
Математика считается точной и доказательной наукой, которая опирается на обоснованные определения и строгие доказательства. Поэтому ее теоремы считаются безусловно верными и не подлежащими сомнению. Предрассудкам (т. е. привычным, но ложным представлениям) в математике, конечно, не место. Однако проведем научное расследование.
Одной из важнейших теорем математики является теорема о непрерывной зависимости решений систем дифференциальных уравнений от их коэффициентов и параметров. Эта теорема лежит в основе всех инженерных расчетов. Действительно, если непрерывной зависимости решений от коэффициентов и параметров нет, то мы не можем быть уверены в том, что даже сколь угодно малые и поэтому неизбежные на практике отклонения действительных параметров рассчитываемого объекта от расчетных значений не приведут к коренным расхождениям между результатом расчета и реальностью, не можем быть уверены, например, в том, что здание, по расчету обязанное стоять долгие годы (как аквапарк «Трансвааль»), неожиданно не обрушится на головы посетителей. Поскольку данная теорема математиками считается доказанной, инженеры верят математикам и опираются на нее в своих расчетах как на незыблемую скалу.
Однако рассмотрим следующую систему двух дифференциальных уравнений
(21)
Эта система, как уже говорилось в предыдущем разделе, описывает процессы в системе, состоящей из электропривода постоянного тока и регулятора с постоянными коэффициентами. Характеристический полином этой системы равен определителю (19), а мы уже убедились в параграфе 10, что в точке т = 1 характер корней характеристического полинома и характер решений системы резко меняются. Если т = 1 + є , где ε — малое число и ε < 0 , то в решении присутствуют только экспоненциально убывающие члены, если же малое в > 0, то в решении появляются стремительно растущие члены вида (20). Непрерывной зависимости решений от параметра т у системы (21) нет. При т = 1 эта зависимость терпит разрыв. Отметим, что подобных систем дифференциальных уравнений, не имеющих непрерывной зависимости решений от коэффициентов и параметров, довольно много. Примеры приведены в книге [2].
Из этих примеров следует, что одна из важнейших математических теорем не верна. Может ли такое быть? Многие математики заявляли — нет, такого быть не может! Теорема приводится во многих авторитетных учебниках, не могут все они ошибаться.
Да, теорема о непрерывной зависимости решений от параметров приведена — и причем с доказательством — во многих университетских учебниках. Примеры:
1. В учебнике для университетов: Степанов В. В. Курс дифференциальных уравнений. М., ГИТТЛ, 1953, 468 с., эта теорема рассмотрена на стр. 298—307.
2. В учебнике: Матвеев Н. М. Методы интегрирования обыкновенных дифференциальных уравнений. М., Высшая школа, 1967, 564 с., теорема рассмотрена на стр. 259—267.
3. В учебнике: Арнольд В. И. Обыкновенные дифференциальные уравнения. М., Наука, 1975, 239 с., теорема рассмотрена на стр. 186—204.
4. В учебнике: Матвеев Н. М. Обыкновенные дифференциальные уравнения, СПб., Специальная литература, 1996, 371 с., теорема рассмотрена на стр. 313—316.
Но — обратите особое внимание — во всех учебниках она доказана лишь для двух частных случаев: для системы из n уравнений первого порядка и для одного уравнения n -ого порядка. Для всех других многочисленных систем — как, например, для системы (21), которая состоит из уравнения третьего порядка для переменной X1 и уравнения первого порядка для х2 — теорема не доказана. Да, почти любую систему, состоящую из уравнений различных порядков, можно путем эквивалентных преобразований свести к системе из n уравнений первого порядка, для которой теорема доказана. Но для того, чтобы из этого вытекала верность теоремы для всех систем, необходимо доказать, что эквивалентные преобразования не меняют никаких свойств решений. А этого никто и никогда не доказывал (и не мог доказать — в книгах [1], [2] , [3] приводились все новые и новые примеры того, как эквивалентные преобразования меняли все новые и новые свойства решений — надо лишь внимательно исследовать; ищите и найдете).
Таким образом, мы убеждаемся, что одна из важнейших и известнейших математических теорем основана не на доказательстве, а на предрассудке — на привычном, но ложном убеждении большинства математиков в том, что эквивалентные преобразования якобы «ничего не меняют». Я опрашивал многих — и выпускников университетов, и их преподавателей: «как по-вашему — верна ли теорема о непрерывной зависимости для всех систем уравнений?» Все дружно отвечали: «да, верна. Верна потому, что для систем из n уравнений первого порядка в учебниках дано доказательство, а остальные системы приводятся к ним путем эквивалентных преобразований, которые «ничего не меняют»».
Мы убеждаемся, что предрассудки существуют и в математике, и предрассудки далеко не безобидные, поскольку они оказываются потом причиной многих техногенных катастроф с гибелью людей. И когда в книгах [1], [2], [3] опровергаются некоторые привычные положения и методики, то это не означает, что опровергаются какие-либо доказанные теоремы. Нет, они не опровергаются, а просто показывается необоснованность ставших привычными предрассудков. И в этом нет ничего страшного.