- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Физика: Парадоксальная механика в вопросах и ответах - Нурбей Гулиа
Шрифт:
Интервал:
Закладка:
Согласно утверждению авторов учебника, в самом начале движения ускорение падения шарика почти равно ускорению свободного падения, а в дальнейшем, когда скорость нарастает, «ускорение тела обращается в нуль и, начиная с этого момента, тело будет двигаться с постоянной установившейся скоростью». Сказанное выделено курсивом в конце раздела, видимо, как очень важное положение, которое следует получше запомнить. Причем приводятся конкретные данные, когда это ускорение обращается в нуль. Для падающей авиабомбы, например, это произойдет через 5–6 км падения.
Проверим, так ли это на самом деле. Воспользуемся формулой (4.14), заимствованной из цитируемого учебника, и, чтобы быть поближе к практике, расшифруем значение коэффициента k для реальных тел, падающих в воздухе:
где Сx – коэффициент обтекаемости, хорошо известный автомобилистам;
? – плотность воздуха;
S – площадь проекции тела на плоскость, перпендикулярную направлению движения.
На падающее тело действуют силы: Р – разность силы тяжести и архимедовой силы, и сопротивление среды R (рис. 20):
Рис. 20. Силы, действующие на тело, падающее в вязкой среде.
В проекции сил на ось падения тела х:
Составляем дифференциальное уравнение движения, используя формальную запись:
Обозначив:
и подставив в (4.18), получим:
или, после разделения переменных:
Интегрируем обе части уравнения:
При х = 0 v = 0, следовательно С1 = 0. Тогда:
Отсюда окончательно находим зависимость скорости v от пути х:
А теперь проверим, при каком значении пути падения х скорость падения достигнет предельного значения, когда ускорение падения равно нулю. С возрастанием х величина:
убывает, стремясь при х ? ? к нулю, а скорость v возрастает, стремясь к некоторой предельной величине с.
Из равенства (4.19) находим:
Однако, как мы видим, скорость эта достигается только при х – со, а стало быть, не достигается никогда. Поэтому все утверждения о моменте, начиная с которого ускорение падения тела становится равным нулю, необоснованны.
Другое дело, что скорость падения может приблизиться к предельной, а ускорение падения может стать очень малым, но равным нулю – никогда. В реальной жизни могут, конечно, встретиться случаи падения, когда тело даже начнет подниматься вверх, например, в восходящих потоках воздуха, чем успешно пользуются птицы и планеристы. Но если считать справедливыми принятые нами условия (4.14), то скорость падения тела в воздухе, как и в любой вязкой сопротивляющейся среде, где сопротивление пропорционально любой (конечной) степени скорости, продолжает расти.
4.9. Вопрос. Если толкнуть плавающее в воде тело, то как скоро оно остановится?
Ответ. С первого взгляда вопрос может показаться некорректным – кажется, что нужно знать массу тела, его обтекаемость, величину импульса толчка и т. д. Но, оказывается, это не так – теоретически тело не остановится никогда. Поясним это, казалось бы, парадоксальное утверждение.
Тело, плывущее в воде с небольшой скоростью v, испытывает сопротивление воды R, пропорциональное первой степени скорости:
где ? – коэффициент сопротивления, зависящий от целого ряда параметров, в данном случае не имеющих принципиального значения. Итак, после сообщенного толчка тело приобретает начальную скорость v0, и затем вдоль линии движения на тело действует только одна сила R, направленная противоположно скорости (рис. 21).
Рис. 21. Силы, действующие на плывущее в воде тело.
Вычисляя проекцию силы, находим:
Для определения времени движения составляем дифференциальное уравнение:
Замечая, что vx = v и ? Fk = – ?v, записываем:
Интегрируем это уравнение, беря от обеих его частей после разделения переменных соответствующие определенные интегралы. При этом нижним пределом каждого из интегралов будет значение переменной интегрирования в начальный момент, а верхним – в произвольный момент времени.
Учитывая, что при t = 0, v = v0, записываем:
Беря интегралы, получаем:
Откуда:
Определяя время движения до остановки, из равенства (4.32) найдем, что при v=0 (остановкатела) время t = ?. Это означает, что при принятом законе сопротивления движению (4.26) тело теоретически будет двигаться бесконечно долго, все время уменьшая свою скорость.
Однако из практики известно, что тело рано или поздно все равно остановится, причем не исключено, что оно может сдвинуться и назад. В чем же здесь дело? А в том, что, во-первых, при чрезвычайно малых скоростях движения закон сопротивления может измениться. Во-вторых, могут измениться свойства жидкости – она может остыть и замерзнуть, покрыться тиной и т. д. Тогда будет действовать какой-то новый закон сопротивления движению тела. Но он нам не задан, а согласно принятому закону сопротивления (4.26), тело будет двигаться уже описанным образом.
Интересно определить путь, который пройдет тело до остановки. Можно предположить, что если тело никогда не остановится, то и пройденный им путь за бесконечно большое время будет тоже бесконечно большим.
Проверим и это. Применим уже известную нам формальную подстановку (см. вопрос 4.8) и составим дифференциальное уравнение движения в виде:
Сокращая обе части его на v, разделяя переменные и учитывая, что при х = 0 v = v0, имеем:
Интегрируя, получаем:
откуда:
или при v = 0:
То есть получаем вполне конкретное значение пути. Например, при массе тела 100 кг, скорости v0 = 1 м/с и ? = 10 кг/с (средний коэффициент сопротивления для обычной лодки), получаем путь движения до остановки х = 10 м. Если проверять эту задачу экспериментально, то так примерно оно и получится. Хоть движение и «вечное», а вот пройденный путь вполне конечен.
Вот к каким неожиданным выводам приводит иногда механика!
4.10. Вопрос. Что такое трение качения?
Ответ. Казалось бы, такое обыденное явление – трение при качении, а ответа – что это такое, по крайней мере, поясняющего сущность вопроса, в школьных учебниках нет. Даже для школ с углубленным изучением физики. Про теорию относительности – есть, а про трение качения, встречающееся, буквально, на каждом шагу – нет. И, может быть, это к лучшему, потому что даже в вузовских учебниках по физике, где рассматривается этот вопрос, ясности все-таки нет. А ведь трение качения – очень важный для техники вопрос, оно обнаруживает себя в любом колесном транспорте, начиная от велосипеда и роликовых коньков и заканчивая многотонными тягачами и поездами, а кроме того, в механических передачах, подшипниках качения и во многих других случаях.
Между тем, объяснить хотя бы в первом приближении – что это такое, не так уж сложно. И одним из этих приближений будет то, что опорную поверхность или дорогу, по которой катится колесо, будем считать абсолютно твердой. Второе допущение, которое совершенно реально: опорная поверхность и поверхность колеса обладают трением скольжения, предельное значение которого превышает максимальное сопротивление качению колеса. Короче говоря, при приложении к оси колеса силы, оно будет катиться, а не скользить «юзом» по дороге. Иногда говорят, что рассматриваемые поверхности «шероховаты», но это недостаточно точно отражает суть вопроса. Трудно представить себе, например, что-нибудь более гладкое, чем зеркальная рабочая поверхность плиток Иогансона, применяющихся для точных измерений расстояний в качестве эталонов длины, но попробуйте сдвинуть одну такую плитку по другой!
А теперь поставим колесо на дорогу, приложим к нему силу тяжести G, нормальную силу со стороны дороги N и будем толкать колесо силой Р, приложенной горизонтально к оси, пытаясь его покатить. Мешает ли нам теоретически что-нибудь это сделать? Нет, все силы пересекаются в точке выхода оси колеса, и моменты, создающие сопротивление качению, не могут образоваться (рис. 22).
Рис. 22. Схема сил, действующих при качении абсолютно твердого колеса по абсолютно твердой дороге.
Получается парадокс – выходит, при качении нет никакого сопротивления? Но заметьте, что мы совершенно не учли деформацию колеса, оно у нас как бы «абсолютно твердое», тверже алмаза. Тогда, конечно, сопротивления качению быть не может, с учетом того, что дорогу мы уже приняли абсолютно твердой. Поэтому, чтобы уменьшить сопротивление трению качения, колёса и железную дорогу делают из очень твердых материалов (не из алмаза, конечно, но из термообработанной стали с наклепом – очень твердого материала). Железнодорожные колеса, катящиеся по рельсам, имеют сопротивление качению во много раз меньше, чем «мягкие» автомобильные колеса.

