- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Начертательная геометрия: конспект лекций - Ю. Щербакова
Шрифт:
Интервал:
Закладка:
Проведя таким же образом еще несколько вспомогательных горизонтальных плоскостей, будем получаться каждый раз по две точки искомой линии. При получении достаточного числа таких точек, следует соединить их плавной кривой, которая будет являться проекцией искомой линии пересечения.
Следовательно, метод проведения вспомогательных плоскостей заключается в нижеследующем.
1. Проводят вспомогательную плоскость Q так, чтобы линию пересечения ее с данной поверхностью можно было легко построить.
2. Приступают к построению этой линии, а также прямой пересечения плоскостей Р и Q, где Р является данной секущей плоскостью. Здесь общие точки линий пересечения плоскости Q с поверхностью и с данной плоскостью Р относятся к искомому сечению.
3. Выполнив несколько вспомогательных плоскостей, определяют необходимое количество точек сечения таким образом, чтобы искомую кривую можно было строить с помощью лекала.
Для поверхностей вращения любая плоскость, перпендикулярная оси вращения, будет пересекать данную поверхность по окружности. При выполнении чертежа все построения, связанные с нахождением отдельных точек кривой, нужно тонко выполнять карандашом, а после обводки кривой тушью вспомогательные построения удаляются. Благодаря этим линиям можно понять способ получения отдельных точек.
Построение развертки в этом случае возможно только в тех отдельных случаях, когда поверхность относится к числу развертывающихся, т. е. таких поверхностей, которые, будучи разрезаными вдоль какой-нибудь линии, могут быть совмещены с плоскостью (как, например, поверхность цилиндра или конуса). Однако многие поверхности, например шаровая, не могут быть совмещены с плоскостью, в связи с этим построение развертки может выполняться только приближенно.
2. Гипербола как сечение поверхности конуса фронтальной плоскостью
Пусть требуется построить сечение поверхности конуса, стоящего на горизонтальной плоскости, плоскостью Р, которая параллельна плоскости V.
На рисунке 103 показана фронтальная плоскость Р, параллельная оси конуса и пересекающая его поверхность по гиперболе. Данная кривая проецируется на плоскость V без искажения.
Выполняя построение проекций сечения, вначале нужно найти секции характерных точек. В данном случае эти характерные точки представляют собой самые нижние и самые верхние ее точки.
Нижние точки сечения. На рисунке 103а показаны две самые нижние точки сечения, они лежат в горизонтальной плоскости проекций и отмечены цифрой 1. Эти точки лежат на пересечении окружности основания с горизонтальным следом секущей плоскости Ph. На эпюре рисунке 103б изображены их горизонтальные проекции 1, а их фронтальные проекции 1́ лежат на оси х.
Верхняя точка сечения (вершина гиперболы). На этом же рисунке дана профильная проекция 3˝ вершины гиперболы, которая непосредственно видна на профильной проекции конуса как пересечение его контура со следом Pw.
Следует отметить, что если профильная проекция конуса отсутствует, то, чтобы найти проекции вершины гиперболы (линии сечения), нужны некоторые вспомогательные построения. При этом любая горизонтальная плоскость Q пересекает конус по окружности, которая проецируется на горизонтальную плоскость Н без искажения. Эта окружность проектируется на фронтальную плоскость проекций в виде отрезка, который равен ее диаметру и который заключен между контурными образующими конуса. Если провести горизонтальную плоскость Q достаточно близко к основанию конуса, то часть данной окружности будет отсечена плоскостью Р (окружностью 2–2). Если провести такую плоскость несколько ближе к вершине, тогда окружность целиком сохранится (окружность 4). Требуется найти такое положение горизонтальной плоскости, которое даст самую большую целую окружность (окружность 3). Эта плоскость будет касаться гиперболы в вершине, она же определит положение искомой точки 3́.
Горизонтальная проекция этой окружности касается следа Ph, а ее радиус равен оа. Поэтому для нахождения проекций вершины гиперболы нужно:
а) повернуть радиус оа на 90° до положения оb;
б) затем найти фронтальную проекцию b́ точки В на контурной образующей конуса;
в) после этого из точки b́ провести прямую, параллельную оси х, до встречи с осью симметрии фронтальной проекции конуса в точке 3́.
Промежуточные точки гиперболы. Чтобы найти проекции промежуточных точек гиперболы, проводят вспомогательные горизонтальные плоскости Q между вершиной гиперболы и основанием конуса. При этом каждая такая плоскость Q определит по паре точек гиперболы. Это построение выполняется следующим образом:
1) сначала проводят фронтальный след Qv секущей горизонтальной плоскости, которая пересекает контур проекции тела в некоторой точке с́;
2) затем находят горизонтальную проекцию с;
3) после чего радиусом оси проводят окружность. При этом точки, в которых след Ph пересекает эту окружность, представляют собой горизонтальные проекции 2 тех точек гиперболы, которые лежат в плоскости Q, поскольку они отделяют сохранившуюся часть окружности от отсеченной плоскостью Р;
4) в завершение находят фронтальные проекции 2́ точек гиперболы на следе Qv.
Данное построение указано на рисунке стрелками. После того как проведено несколько вспомогательных плоскостей и построено достаточное количество точек гиперболы, следует соединить их при помощи лекала.
Лекция № 11. Пересечение поверхности тел вращения проецирующей плоскостью
1. Сечение поверхности цилиндра
Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью:
1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основанию цилиндра (рис. 104а);
2) эллипс, если секущая плоскость Р не перпендикулярна и не параллельна оси цилиндра (рис. 104б);
3) пара прямых, если секущая плоскость Q содержит ось цилиндра или параллельна ей (рис. 104в).
Особый интерес представляет случай, когда наклонная секущая плоскость пересекает основание цилиндра (плоскость Р1 на рис. 104б). Здесь часть эллипса может быть неверно принята за параболу или гиперболу. Нужно знать, что ни парабола, ни гипербола не могут быть получены как сечение поверхности кругового цилиндра плоскостью.
На рисунке 105 показано пересечение поверхности цилиндра фронтально-проецирующей плоскостью Р. Здесь для цилиндра рассмотрено решение всех трех основных задач, связанных с сечением тела плоскостью, т. е. отыскание проекций сечения, его натурального вида и построение развёртки.
Проекции сечения. На рисунке 105а рассмотрено наглядное изображение сечения, а отсюда видно, что большая ось эллипса представлена хордой 0–6, которая пересекает ось цилиндра в точке С. При этом малая ось направлена по горизонтали, перпендикулярной в плоскости V. Следовательно, малая ось проектируется без искажения на горизонтальной и профильной плоскости (рис. 105б), а центр эллипса находится на оси цилиндра (точка С). Следует отметить, что на рисунке 105б ось симметрии проходит через точки 0–6.
Получающийся в горизонтальном сечении эллипс проецируется на плоскость в виде окружности основания, а на профильную плоскость – в виде эллипса. При этом большая ось эллипса 3˝-9˝ является проекцией малой оси 3–9 исходного эллипса, а малая ось 0˝-6˝ представляет собой проекцию большой оси 0–6. На фронтальной плоскости проекция эллипса есть отрезок 0́-6́, который равен большой оси самого эллипса.
Следовательно, в самом начале построения можно получить две готовые проекции сечения: горизонтальную и фронтальную. После этого нужно построить только профильную проекцию. Следует заметить, что точки 3˝ и 9˝ отделяют видимую часть кривой от невидимой на профильной проекции. Если секущая плоскость Р наклонена к плоскости основания цилиндра под углом 45°, то профильная проекция эллипса является окружностью. На рисунке 105 угол наклона секущей плоскости меньше 45°, вследствие этого профильная проекция большой оси представляет собой малую ось профильной проекции эллипса. В том случае, если бы угол наклона секущей плоскости был больше 45°, проекция большой оси была бы большой осью профильной проекции эллипса.
Построение натурального вида сечения. Сначала нужно отметить цифрами ряд точек на проекциях эллипса (на рис. 105 отмечено 12 таких точек), после чего следует начинать построение натурального вида сечения. Выполнить это можно двумя способами:

