- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Проклятые вопросы - Ирина Радунская
Шрифт:
Интервал:
Закладка:
Главной изюминкой в их теории было объяснение «механизма», возникающего в металлах при низких температурах и заставляющего электроны объединяться в пары. Известно, что в пустоте электроны, имеющие отрицательный заряд, отталкиваются один от другого. Двигаясь в металлах, каждый электрон притягивает положительно заряженные ионы, образующие кристаллическую решётку металла, и притягивается к ним. Это приводит к деформации решётки, а у движущегося электрона возникает «хвост» положительного заряда. Этот хвост исчезает не сразу и может притягивать другой электрон. Таким образом, в металле наряду с обычным взаимным отталкиванием электронов возникает экзотическое явление — взаимное притяжение электронов за счёт смещения ионов решётки.
Теперь можно уточнить аналогию с игрой в мяч. Фононы, которыми обменивается каждая пара электронов, порождаются колебаниями атомов металла. В игру, в обмен фононами между каждой парой электронов, одновременно вовлечено множество атомов металла.
Сверхпроводимость возникает, когда взаимное притяжение электронов, обусловленное их взаимодействием с колебаниями решётки, превзойдёт по величине обычное отталкивание их зарядов.
Формулы, выражающие эту простую картину, объясняют, почему сверхпроводимость возникает только при очень низких температурах. Они объясняют и другие явления, показывают, за счёт чего температура, при которой данный металл переходит в сверхпроводящее состояние, различна для различных металлов, почему сверхпроводимость с трудом возникает в лучших проводниках, таких, как серебро и медь, но легко наблюдается в плохих проводниках, например в олове и свинце.
Формулы говорят, что высокая проводимость серебра и меди обеспечивается тем, что в них электроны слабо взаимодействуют с решёткой. При этом энергия, придаваемая электронам электрическим полем, почти не передаётся кристаллической решётке, не приводит к нагреванию металла. Но слабость взаимодействия электронов с атомами решётки металла приводит к тому, что «хвост» положительного заряда слаб и не может побороть действия теплового движения решётки даже при очень низких температурах. Именно поэтому хорошие проводники с трудом становятся сверхпроводниками.
Формулы говорят о том, как отдельные куперовские пары образуют сверхтекучую электронную жидкость — коллектив куперовских пар, движущийся внутри металла без затраты энергии. Формулы показывают, что в сверхпроводниках равновесие между притяжением и отталкиванием в каждой куперовской паре достигается уже на сравнительно больших расстояниях между электронами, образующими пару. Среднее расстояние между электронами, входящими в пару, равно нескольким тысячам расстояний между атомами металла, образующими его решётку. Поэтому каждая пара обладает объёмом, в котором одновременно находятся миллиарды других электронных пар. Вследствие этого отдельные пары оказываются неразличимыми и одновременно связанными в единый коллектив. Так возникает тот макроскопический коллектив, о существовании которого догадался Лондон. Пример удивительной прозорливости, зрелости и глубокой интуиции. Пример того, как размышляет настоящий физик.
Годом позже Боголюбов на основе своей прежней работы, в которой были описаны свойства сверхтекучести, с учётом представления о куперовских парах, построил теорию сверхпроводимости, более сложную, но более корректную с математической точки зрения. Независимость и математическую ясность теории Боголюбова подчёркивал Бардин.
Но Бардин указывал и на ограниченность теории. В 1957 году в одной из своих статей он отмечает, что множество физиков приложили усилия к совершенствованию теории сверхпроводимости.
Хотя в то время теория и не достигла уровня, достаточного для предсказания пути, по которому должны были двигаться учёные, чтобы получить материалы с более высокой температурой возникновения сверхпроводимости, она позволяла разобраться в деталях явления и делать предсказания. А это — высшая цель каждой новой теории.
«ВПЕРВЫЕ ПОЧУВСТВОВАЛ СЕБЯ ФИЗИКОМ…»
В 1973 году Нобелевская премия по физике была присуждена трём учёным: Лео Исаки, Ивару Гиаверу и Бриану Джозефсону. Все они изучали туннельный эффект, и все открыли путь к важным практическим применениям этого эффекта. Первый из них изучал туннельный эффект в по лупроводниках и изобрёл транзистор, общеизвестный теперь миниатюрный прибор, заменивший в большинстве случаев электронную лампу.
Прежде чем идти дальше, следует немного разобраться в сути туннельного эффекта.
Для того чтобы железная дорога пересекла горный хребет, существует два способа. Можно проложить рельсы через хребет, а можно построить туннель под этим хребтом. В первом случае для преодоления подъёма локомотив должен затратить энергию, пропорциональную высоте хребта и массе поезда. Туннель экономит эту энергию.
Так обстоят дела в макромире, где царствуют законы классической физики.
В микромире, мире атомов и элементарных частиц, эти законы теряют силу, и их место занимают другие законы квантовой физики. Законы поразительные и в каждом частном проявлении неожиданные и противоречащие всему опыту наблюдений обычного мира.
Для поезда надо строить туннель. Но микрочастицы, подходящие к препятствию, даже те, что не обладают энергией, достаточной для его преодоления, имеют тем не менеё определённую вероятность пройти сквозь него даже при отсутствии какого-либо подобия туннеля.
Слово «вероятность» имеет при этом смысл — «могут преодолеть препятствие после многих неудачных попыток». В большинстве случаев, происходящих в макромире, частица, ударяющаяся о барьер, отражается от него или застревает в нём, как пуля в толстом слое песка. Но в микромире изредка происходит процесс, совершенно немыслимый с точки зрения классической физики: частица, подходя к барьеру, исчезает, а с другой стороны барьера возникает, рождается (тут невозможно найти точное слово) такая же частица, имеющая совершенно ту же скорость, которой обладала исчезнувшая частица.
Физики называют это туннельным переходом. Он совершается без какой-либо затраты энергии. Внутри барьера не остаётся никакого туннеля, никакого следа. Процесс исчезновения и рождения частицы происходит вне барьера. Таково свойство микромира. К этому нужно привыкнуть!
Это не чудо, а реальный процесс. Его вероятность уменьшается, если энергия, нужная для преодоления барьера классическим путём — путём подъёма на барьер, увеличивается.
После этого отступления давайте обратимся к рассказу Гиавера, который он адресовал тем, кто присутствовал при вручении ему Нобелевской премии.
Он сказал: «В одной из газет Осло я недавно обнаружил следующий заголовок — ”Мастер по биллиарду и бриджу, едва не провалившийся на экзамене по физике, получает Нобелевскую премию». Речь шла о моих студенческих годах в Трондхейме. Должен сознаться, что это сообщение не лишено оснований, поэтому я не только не буду пытаться делать вид, что этого не было, но признаюсь также, что я чуть не провалился и по математике. В те дни меня не очень интересовали инженерное дело и учёба вообще».
Гиавер всё же окончил университет, но в поисках работы ему пришлось покинуть Норвегию. Он поступил на работу в канадскую фирму «Дженерал электрик». Ему предложили пройти трёхгодичный курс инженерного дела и прикладной математики.
«На этот раз, — сказал он, — я понял, что к делу надо относиться серьёзно, поскольку это, возможно, мой последний шанс…» Ему поручили работать с тонкими плёнками, о которых он не имел понятия. Но ему повезло. Он был связан по работе с Д. Фишером. Тот тоже начинал как инженер, но заинтересовался теоретической физикой. От Фишера он услышал о туннельных переходах, возможных в таких плёнках.
В это время Гиавер только одолевал квантовую механику. «Поэтому, — сказал он, — представление о том, что частица может проходить сквозь барьер, казалось мне чем-то удивительным. Для инженера весьма странно звучит утверждение, что если вы будете бросать теннисный мяч в стену достаточное число раз, то он в конце концов пройдет сквозь стену, не разрушив ее и не разрушившись сам». «Да, — продолжал он, — трудный путь лежит к Нобелевской премии! Фокус, конечно, состоит в том, чтобы использовать очень маленькие мячи и взять их много». Точнее, скажем мы, это должны быть не маленькие мячи, а микрочастицы, например электроны, подчиняющиеся законам квантовой физики.
Гиавер и Фишер начали изучать процесс перехода электронов через энергетический барьер. Это была трудная задача. Первые опыты кончились неудачей. Но «в конце концов мы оба понимали кое-что в технике».
Они попытались реализовать энергетический барьер при помощи тончайшей полимерной плёнки, разделяющей два металла. «Однако в таких плёнках неизбежно имеются маленькие дырочки…» Эти микроскопические, но реальные туннели препятствовали опытам. Друзья решили изготавливать изолирующие плёнки, испаряя металлы в вакууме и конденсируя их пары на удобных подложках. Нанеся первый слой, они окисляли его поверхность. При этом возникал тонкий изолирующий слой окисла. Затем напыливали второй слой металла. Теперь опыты стали воспроизводимыми. Всё шло согласно квантовой теории, с которой Гиавер уже познакомился. Он знал, что электроны иногда ведут себя не как частицы, а как волны, и свыкся с тем, что они способны проходить сквозь энергетический барьер.