Теория игр. Искусство стратегического мышления в бизнесе и жизни - Авинаш Диксит
Шрифт:
Интервал:
Закладка:
Когда речь идет об одном сеансе игры, делать произвольный выбор не так уж сложно. Но если игра повторяется, необходимо найти более искусный подход. Смешивание ходов не сводится к предсказуемой смене стратегий. Ваш соперник, понаблюдав за вами, может столь же легко использовать любую закономерность в вашей игре, как и многократное повторение одной неизменной стратегии. Непредсказуемость – вот что самое важное в смешивании ходов.
Как оказалось, большинство людей ведут себя предсказуемо. Вы можете проверить это сами, сыграв в игру «камень, ножницы, бумага» в режиме онлайн: компьютерные программы способны распознавать закономерности, поэтому и побеждают вас[11]. Пытаясь все запутать, игроки слишком часто применяют одни и те же стратегии поочередно. Это приводит к неожиданному успеху «лавинной» стратегии: камень, камень, камень.
Кроме того, людям свойственно принимать решения под влиянием того, что сделала другая сторона в прошлый раз. Если бы и Sotheby’s, и Christie’s начали игру с ножниц, была бы ничья и игру пришлось бы начинать заново. Учитывая то, что сказала Флора, в Sotheby’s рассчитывали бы, что Christie’s сыграет камнем (чтобы побить их ножницы). Поэтому в Sotheby’s выбрали бы бумагу, а в Christie’s отдали бы предпочтение ножницам. Разумеется, такой шаблонный подход тоже не может быть правильным. Если бы он был верным, в Sotheby’s могли бы сыграть камнем и одержать победу.
Представьте себе, что произошло бы, если бы существовала некая известная всем формула выбора объектов для проведения налоговой проверки. Перед подачей налоговой декларации вы могли бы с помощью этой формулы определить, будет ли налоговая служба вас проверять. Если проверка возможна, но вы видите способ «подкорректировать» свою декларацию о доходах до тех пор, пока формула больше не будет предсказывать проверку, скорее всего, вы так бы и сделали. Если же проверка неизбежна, вы предпочли бы сказать правду. Предсказуемость действий налоговой службы закончилась бы тем, что налоговая проверка проводилась бы не там, где следовало. Все, кто попадает под проверку, знали бы, что их ждет, и предпочли бы действовать честно. С другой стороны, те люди, которым удалось избежать проверки, отвечали бы только перед своей совестью. Если налоговая служба выбирает объекты для проверки в произвольном порядке, попасть под такую проверку рискуют все, и это создает дополнительный стимул для честности.
Важность рандомизированной стратегии оказалась одним из первых открытий теории игр. Это достаточно простая и интуитивно понятная идея, но она требует уточнения, чтобы ее можно было успешно использовать на практике. Теннисисту недостаточно знать, что ему придется отбивать подачи соперника слева и справа. Он должен иметь какое-то представление о том, как часто ему придется отбивать удар справа – в 30 или 64 процентах случаев; ему также необходимо понимать, что ответ на этот вопрос зависит от относительной силы ударов с обеих сторон. В главе 5 мы расскажем о методах, позволяющих найти ответ на этот вопрос.
Мы хотели бы завершить этот раздел следующим замечанием. В игре «камень, ножницы, бумага» больше всех проиграл не аукционный дом Sotheby’s, а господин Хашияма. Его решение использовать эту игру предоставило двум аукционным домам равные возможности заработать комиссионные. Вместо того чтобы позволять двум соперникам договориться о разделе комиссионных, он мог бы устроить свой собственный аукцион. Обе компании были готовы и даже весьма заинтересованы в том, чтобы взять на себя продажу его коллекции произведений искусства и получить при этом 12 процентов комиссионных{25}. Победителем стал бы тот аукционный дом, который предложил более низкую ставку. Я слышу 11 процентов? Раз… два…
История 9. Пари для простаков
В фильме Guys and Dolls{26} азартный игрок Скай Мастерсон рассказывает о том, какой ценный совет он получил когда-то от своего отца:
Однажды ты встретишь на своем пути парня, который покажет тебе абсолютно новую, нераспечатанную колоду карт. Затем он предложит тебе пари на то, что вытянет из колоды пикового валета, и если выиграет, то пустит тебе струю сидра в ухо. Но, сынок, ни в коем случае не соглашайся на это пари, иначе ты закончишь тем, что в твоем ухе будет полно сидра – и это так же верно, как то, что ты стоишь здесь передо мной.
В одном из эпизодов фильма Натан Детройт предложил Скаю Мастерсону такое пари: чего Минди продает больше – штруделей или творожных пирогов. Натан знал правильный ответ (штрудели) и был готов поручиться, что Скай поставит на творожный пирог{27}.
На первый взгляд этот пример может показаться крайностью. Разумеется, никто не стал бы заключать столь глупое пари. Или стал бы? Посмотрите на рынок фьючерсных контрактов на Чикагской бирже опционов. Когда какой-то биржевой игрок предлагает продать вам фьючерсный контракт, он заработает деньги только в случае, если вы их потеряете{28}.
Если вы фермер и выращиваете сою на продажу, тогда фьючерсный контракт станет вашей страховкой от риска неблагоприятного колебания цен в будущем. Точно так же, если вы продаете соевое молоко и вам необходимо будет купить сою, для вас такой контракт – тоже страховка, а не азартная игра.
Однако объем торгов фьючерсными контрактами на бирже говорит о том, что большинство людей, которые покупают и продают их, – это трейдеры, а не фермеры или производители. Для них эта сделка представляет собой игру с нулевой суммой. Когда оба участника сделки соглашаются заключить ее, каждый из них считает, что заработает деньги. Следовательно, один из участников сделки ошибается. Таков характер игры с нулевой суммой: выигрывает только одна сторона.
В этом и есть парадокс. Как могут оба участника сделки считать, что они перехитрят друг друга? Кто-то из них наверняка неправ. Почему вы считаете, что ошибается кто-то другой, а не вы? Предположим, у вас нет инсайдерской информации. Если кто-то готов продать вам фьючерсный контракт, любые деньги, которые вы заработаете, потеряет другая сторона. Почему вы считаете, что вы умнее? Не забывайте: другой участник сделки готов заключить ее с вами только потому, что считает себя умнее вас.
В покере игроки сталкиваются с этим парадоксом, когда дело доходит до повышения ставок. Если игрок делает ставки только тогда, когда у него хорошие карты, другие участники игры вскоре поймут это. В ответ на повышение ставок они откажутся от борьбы, так что этот игрок не сможет сорвать большой банк. Если найдутся игроки, которые пойдут на повышение ставок, это означает, что у них карты еще лучше, поэтому нашего бедного игрока ожидает большой проигрыш. Другие игроки могут сыграть против сильной карты, только если им кажется, что вы блефуете. Для того чтобы убедить их в этом, следует делать ставки достаточно часто, время от времени допуская при этом блеф. В результате возникает интересная дилемма. Вы хотели бы, чтобы другие игроки сбросили карты, когда вы блефуете, это дало бы вам возможность выиграть с плохими картами. Но тогда вы не сможете победить, взяв большой банк. Чтобы убедить других игроков в необходимости поднять ставки, вам нужно, чтобы вас поймали на блефе.