- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Интернет-журнал 'Домашняя лаборатория', 2007 №6 - Вязовский
Шрифт:
Интервал:
Закладка:
Следовательно, чем выше температура тела, тем быстрее движутся молекулы. Броуновское движение тоже убыстряется с температурой. И нам хочется, чтобы между теорией вероятностей и этим фактом была связь. Но связь эта не так уж элементарна. Во всяком случае, не может быть и речи, о том, что броуновская частичка сдвигается будто от того, что получила щелчок от одной из молекул.
ВЕРОЯТНОСТЬ — ДИРИЖЕР ДВИЖЕНИЯ
Теория броуновского движения была создана Альбертом Эйнштейном в том же году, в котором была опубликована его первая статья по теории относительности.
В качестве образа модели явления, которую обсчитал (прошу прощения — это научный жаргон) Эйнштейн, можно предложить футбольный мяч, залетевший в часы «пик» на центральный рынок страны Лилипутии. «Огромный» мяч мешает базарной сутолоке. Спешащие лилипутяне беспорядочно толкают его во все стороны.
Наглядно представив себе эту фантастическую картину, вы, конечно, согласитесь с тем, что уравновешивание молекулярных щелчков, которые получает броуновская частичка, будет несовершенным. Для того чтобы частичка пришла в движение, надо, чтобы перевес ударов, нанесенных с какой-нибудь стороны, превосходил удары, пришедшиеся на противоположную ее сторону. Если частичка очень большая (доли миллиметра — это много в мире молекул), то колебания (физики предпочитают термин «флуктуации») давления на нее «слева» и «справа» будут незначительными и броуновское движение не обнаружит себя. Если же размер частички «подходящий», то случайности в распределении толчков слева и справа, сверху и снизу приведут к легко наблюдаемому ее движению.
Если верить в существование молекул, то приведенное истолкование броуновского движения достаточно легко приходит в голову. Качественное объяснение, которое мы привели, в той или иной форме высказывалось рядом исследователей до Эйнштейна.
Но самые умные разговоры о явлении еще не составляют теории. От теории требуются количественные предсказания.
Что же может и должно быть подсчитано?
За отдельными скачками броуновской частицы следить трудно. Поэтому Эйнштейн поставил перед собой вопрос: какова вероятность найти частичку через одну секунду (или десять секунд или сто секунд) на том или ином расстоянии от исходной точки.
Представьте себе, что имеется лишь одна броуновская частица и она светится. За частичкой наблюдает фотоаппарат, затвор которого открывается на мгновение через каждую секунду. Съемка ведется все время на одну и ту же пластинку. Через какое-то время пластинка проявляется. На что будет похожа картина, которую мы увидим? Согласно теории Эйнштейна фотография должна совпадать с результатом стрельбы по мишени. Посмотрите на приведенный рисунок. Это не итог стрелковых испытаний, а отчет об опытном исследовании броуновского движения. Точки показывают места, где находилась частица в моменты наблюдения.
Трудно придумать более яркое доказательство общности математического основания, на котором покоятся случайности столь разного происхождения. Математик скажет — разве это не доказывает, что молекулярная физика есть глава теории вероятностей. Физик согласится с тем, что пригодились рассуждения об игральных костях.
Можно обработать результаты наблюдений и таким образом, что появится наша хорошая знакомая гауссова кривая.
Наложим на снимок сетку параллельных линий. Одна из линий должна проходить через начальную точку. Теперь сосчитаем число точек, попавших между нулевой и плюс первой линией (плюс — значит вправо), плюс первой и плюс второй и т. д. Такой же подсчет проведем для левой части снимка. Получили таким способом числа, пропорциональные вероятности отклонения броуновской частицы на разные расстояния вправо и влево от начальной точки.
Можно убедиться в том, что результат подсчета не зависит от того, как ориентирована сетка, наложенная на снимок, поскольку в танце броуновской частицы (так же, как в ошибках стрелка) все направления отклонения равновероятны.
Остается построить график: по горизонтальной оси отложим величины отклонения, а по вертикали — число точек.
Полученная кривая ничем не отличается от гауссовой кривой, на которую ложатся отклонения от среднего роста призывников, отклонения от средней оценки качества фильма «Великолепная семерка».
Еще раз повторим: когда речь идет о поведении случайной величины, математика не нуждается в том, чтобы мы ей сказали, чем интересуемся: физикой, биологией, эстетикой или игрой в карты.
Итак, Эйнштейн получил гауссову кривую для вероятности найти частичку на том или ином расстоянии от начального положения. Центр кривой лежит в исходной точке, то есть вероятнее всего найти частичку там, где она была. Если построить гауссовы кривые для разных промежутков времени, прошедших с начала наблюдения, то мы увидим, что с возрастанием промежутка времени между последовательными снимками положения броуновской частицы кривые будут все более расплывчатыми: через тысячу секунд частичку можно найти почти где угодно. Однако для времени порядка одной секунды кривая будет достаточно узкой.
Главным количественным результатом теории является полученная Эйнштейном формула полуширины кривой. Для данного промежутка времени она однозначно связана с температурой, коэффициентом вязкости и числом Авогадро. (Число Авогадро — это обратная величина массы атома водорода, которая равняется 1,6∙10-24 грамма. Число Авогадро, равное 6∙1023, имеет, очевидно, смысл числа атомов водорода в одном грамме.) Вид кривой (а значит, и ее полуширину) нам дает опыт; коэффициент вязкости всегда легко измерить; температура опыта известна. Таким образом возникает возможность определить число Авогадро. Если проделать опыты для разных жидкостей, разных температур, разных частиц и показать, что всегда получается одно и то же число, то, конечно, не останется ни одного скептика, который бы упрямо твердил: «Не верю в молекулы».
Нокаутировал скептиков Жан Перрен. Произошло это в 1909 году. Семнадцать лет спустя (большой перерыв, наверное, связан с войной) Перрен получил за эти замечательные исследования высшую награду ученого — Нобелевскую премию.
Прежде чем перейти к подробному описанию экспериментов Перрена, я хочу закончить рассказ об этом частном вопросе забавной деталью: Эйнштейн не знал о существовании броуновского движения. Обдумывая молекулярно-кинетические представления, он сообразил, что взвешенная в жидкости частичка должна быть индикатором теплового движения молекул.
ВЕК НЫНЕШНИЙ И ВЕК МИНУВШИЙ
Теперь мне хочется рассказать о том, как трудился Перрен. Готовясь писать эти строки, я отыскал работу Перрена, опубликованную в 1908 году во французских «Анналах физики и химии», и прочитал ее с огромным удовольствием и завистью. Хотел бы я заниматься научными исследованиями в то время или, вернее, не в то время, а в той творческой атмосфере. Очень мне нравится стиль рабочей жизни физика конца XIX и начала XX века.
Статья Перрена занимает 98 страниц. Она написана в спокойной, неторопливой манере. Попробуйте написать сейчас статью размером более 10–12 страниц, и вы увидите недоумение на лице секретаря редакции любого научного журнала. «Вы что, — вскинется он, — открыли еще одну теорию относительности?.. Все равно укладывайтесь

