- Любовные романы
- Фантастика и фэнтези
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
C++. Сборник рецептов - Д. Стефенс
Шрифт:
Интервал:
Закладка:
template<class Iter_T>
void outputRowOrColumn(Iter_T iter, int n) {
for (int i=0; i < n; ++i) {
cout << iter[i] << " ";
}
cout << endl;
}
template<class Matrix_T>
void initializeMatrix(Matrix_T& m) {
int k = 0;
for (int i=0; i < m.rows(); ++i) {
for (int j=0; j < m.cols(); ++j) {
m[i][j] = k++;
}
}
}
template<class Matrix_T>
void outputMatrix(Matrix_T& m) {
for (int i=0; i < m.rows(); ++i) {
cout << "Row " << i << " = ";
outputRowOrColumn(m.row(i), m.cols());
}
for (int i=0; i < m.cols(); ++i) {
cout << "Column " << i << " = ";
outputRowOrColumn(m.col(i), m.rows());
}
}
int main() {
kmatrix<int, 2, 4> m;
initializeMatrix(m); m *= 2;
outputMatrix(m);
}
Программа примера 11.31 выдает следующий результат.
Row 0 = 0 2 4 6
Row 1 = 8 10 12 14
Column 0 = 0 8
Column 1 = 2 10
Column 2 = 4 12
Column 3 = 6 14
ОбсуждениеПредставленные в примерах 11.30 и 11.31 определение шаблона класса kmatrix и пример его использования очень напоминают шаблон класса matrix из рецепта 11.14. Единственным существенным отличием является то, что при объявлении экземпляра kmatrix приходится передавать размерности матрицы через параметры шаблона, например;
kmatrix<int 5, 6> m; // объявляет матрицу с пятью строками и шестью
// столбцами
В приложениях многих типов часто требуется, чтобы матрицы имели размерности, известные на этапе компиляции. Передача размера строк и столбцов через параметры шаблона позволяет компилятору легче применять такую оптимизацию, как развертка цикла, встраивание функций и ускорение индексации.
Как и рассмотренный ранее шаблон статического вектора (kvector), шаблон kmatrix особенно эффективен при небольших размерах матрицы.
Смотри такжеРецепты 11.14 и 11.16.
11.16. Умножение матриц
ПроблемаТребуется эффективно выполнить умножение двух матриц.
РешениеПример 11.32 показывает, как можно выполнить умножение матриц, причем эта реализация подходит как для динамических, так и для статических матриц. Формально этот алгоритм реализует соотношение A=A+B*C, которое (возможно, неожиданно) вычисляется более эффективно, чем A=B*C.
Пример 11.32. Умножение матриц
#include "matrix.hpp" // рецепт 11.13
#include "kmatrix.hpp" // рецепт 11.14
#include <iostream>
#include <cassert>
using namespace std;
template<class M1, class M2, class M3>
void matrixMultiply(const M1& m1, const M2& m2, M3& m3) {
assert(m1.cols() == m2.rows());
assert(m1.rows() == m3.rows());
assert(m2.cols() == m3.cols());
for (int i=m1.rows()-1; i >= 0; --i) {
for (int j=m2.cols()-1; j >= 0; --j) {
for (int k = m1.cols()-1; k >= 0; --k) {
m3[i][j] += m1[i][k] * m2[k][j];
}
}
}
}
int main() {
matrix<int> m1(2, 1);
matrix<int> m2(1, 2);
kmatrix<int, 2, 2> m3;
m3 = 0;
m1[0][0] = 1;
m1[1][0] = 2;
m2[0][0] = 3;
m2[0][1] = 4;
matrixMultlply(m1, m2, m3);
cout << "(" << m3[0][0] << ", " << m3[0][1] << ")" << endl;
cout << "(" << m3[1][0] << ", " << m3[1][1 ] << ")" << endl;
}
Программа примера 11.32 выдает следующий результат.
(3, 4)
(6, 8)
ОбсуждениеПри умножении двух матриц число столбцов первой матрицы должно равняться числу строк второй матрицы. Число строк полученной матрицы равно числу строк первой матрицы, а число столбцов равно числу столбцов второй матрицы. Я обеспечиваю эти условия в отладочной версии с помощью макроса assert, определенного в заголовочном файле <cassert>.
Решающее значение для эффективной реализации умножения имеет отсутствие избыточных операций по созданию и копированию временных объектов. Так, представленная в примере 11.32 функция умножения матриц передает результат по ссылке. Если бы алгоритм умножения я реализовал впрямую путем перегрузки оператора operator*, это привело бы к лишним операциям распределения, копирования и освобождения памяти, занимаемой временной матрицей. Потенциально такой подход может оказаться очень затратным при работе с большими матрицами.
В примере 11.32 реализуется равенство A=A+B*C, а не A=B*C, для того чтобы избежать лишней инициализации значений матрицы A.
Смотри такжеРецепт 11.17.
11.17. Вычисление быстрого преобразования Фурье
ПроблемаТребуется выполнить эффективный расчет дискретного преобразования Фурье (ДПФ), используя алгоритм быстрого преобразования Фурье (БПФ).
РешениеПрограммный код примера 11.33 обеспечивает базовую реализацию БПФ.
Пример 11.33. Реализация БПФ
#include <iostream>
#include <complex>
#include <cmath>
#include <iterator>
using namespace std;
unsigned int bitReverse(unsigned int x, int log2n) {
int n = 0;
int mask = 0x1;
for (int i=0; i < log2n; i++) {
n <<= 1;
n |= (x & 1);
x >>= 1;
}
return n;
}
const double PI = 3.1415926536;
template<class Iter_T>
void fft(Iter_r a, Iter_r b, int log2n) {
typedef typename iterator_traits<Iter T>::value_type complex;
const complex J(0, 1);
int n = 1 << log2n;
for (unsigned int i=0; i < n; ++i) {
b[bitReverse(i, log2n)] = a[i];
}
for (int s = 1; s <= log2n; ++s) {
int m = 1 << s;
int m2 = m >> 1;
complex w(1, 0);
complex wm = exp(-J * (PI / m2));
for (int j=0; j < m2; ++j) {
for (int k=j; k < n; k += m) {
complex t = w * b[k + m2];
complex u = b[k];
b[k] = u + t;
b[k + m2] = u - t;
}
w *= wm;
}
}
}
int main() {
typedef complex<double> cx;
cx a[] = { cx(0, 0), cx(1, 1), cx(3, 3), cx(4, 4),
cx(4, 4), cx(3, 3), cx(1, 1), cx(0, 0) };
cx b[8];
fft(a, b, 3);
for (int i=0; i<8; ++i) cout << b[i] << "n";
}
Программа примера 11.33 выдает следующий результат.
(16,16)
(-4.82843,-11.6569)
(0,0)
(-0.343146,0.828427)
(0.0)
(0.828427,-0.343146)
(0,0)
(-11.6569,-4.82843)
ОбсуждениеПреобразование Фурье играет важную роль в спектральном анализе и часто используется в технических и научных приложениях. БПФ — это алгоритм вычисления ДПФ, который имеет сложность порядка N log2(N) в отличие от ожидаемой сложности N² для простой реализации ДПФ. Такое впечатляющее ускорение достигается в БПФ благодаря устранению избыточных вычислений.
Очень не просто найти хорошую реализацию БПФ, написанную на «правильном» C++ (т. е. когда программа на C++ не является механическим переложением алгоритмов, написанных на Фортране или С) и которая не была бы защищена сильно ограничивающей лицензией. Представленный в примере 11.33 программный код основан на открытом коде, который можно найти в сетевой конференции Usenet, посвященной цифровой обработке сигналов (comp.dsp). Большим преимуществом реализации БПФ на правильном C++ по сравнению с более распространенным решением в стиле С является то, что стандартная библиотека содержит шаблон complex, который позволяет существенно снизить объем необходимого программного кода. В представленной в примере 11.33 функции fft() основное внимание уделялось простоте, а не эффективности.
11.18. Работа с полярными координатами
ПроблемаТребуется обеспечить представление полярных координат и манипулирование ими.
РешениеШаблон complex из заголовочного файла <complex> содержит функции преобразования в полярные координаты и обратно. Пример 11.34 показывает, как можно использовать класс шаблона complex для представления и манипулирования полярными координатами.
Пример 11.34. Применение шаблонного класса complex для представления полярных координат
#include <complex>
#include <iostream>
using namespace std;
int main() {
double rho = 3.0; // длина
double theta = 3.141592 / 2; // угол