Категории
Самые читаемые
Лучшие книги » Научные и научно-популярные книги » Научпоп » Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - Коллектив авторов

Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - Коллектив авторов

Читать онлайн Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 102 103 104 105 106 107 108 109 110 ... 122
Перейти на страницу:

«Атомы отдачи». Это атомы образовавшегося изотопа, вылетающие из мишени при обстреле ее пучком нейтронов или многозарядных ионов. В модельных опытах применялись мишени из окислов разных элементов в зависимости от того, какие атомы отдачи нужно было получить. Мишени наносились на алюминиевую подложку. Коротко- живущие изотопы гафния 170Hf и 171Hf получены при облучении ионами неона естественной смеси изотопов самария.

В процессе облучения наряду с 170Hf и 171Hf образовывались другие изотопы, в том числе изотопы лантаноидов. Их тоже превращали в хлориды и почти полностью отделяли от изотопов гафния — «коэффициент очистки достигал значения ≥ 100». (Это значит, что количество примесей уменьшалось более чем в 100 раз.) При работе с плутониевой мишенью, когда вместо гафния и лантаноидов атомами отдачи будут атомы 104-го элемента и актиноидов, должно происходить то же самое!

«Газовый поток». Соединения изотопов, живущих считанные секунды, а то и доли секунды, можно исследовать только в газовой фазе. Любимая химиками работа с растворами тут исключена: не успеешь оглянуться (не то что перемешать раствор) — объект исследования исчез. А газовому потоку можно придать непрерывное движение с большой скоростью. Скорости реакций, идущих в нем, также могут быть очень велики.

Функции газового потока двояки: он и участник реакции, и переносчик образующихся соединений к детекторам — регистраторам распада необычных атомов. Поэтому в состав газового потока входит несколько компонентов различного назначения. Количественно преобладает инертный компонент — азот, атомы которого принимают избыток энергии атомов отдачи.

Другой компонент газового потока — хлорирующий агент. В большинстве модельных опытов им были пары ZrCl4 и NbCl5, которые одновременно выполняли функции носителя. Носитель должен не только связать атомы отдачи в химические соединения, но и донести эти считанные молекулы до детектора. В условиях опыта (температура 250°C, давление 0,2 мм ртутного столба) эти соли находятся в газообразном состоянии.

Носители транспортируют далеко не все атомы. Пары ZrCl4 и NbCl5 переносили к детекторам хлориды гафния, ниобия, ванадия и олова. А хлориды других элементов, в том числе трехвалентных лантаноидов, осаждались на стенках газового тракта и в специальной ловушке.

«Газовый тракт» — это изолированное пространство, в котором, собственно, происходят все химические преобразования атомов отдачи и их соединений. Начинается тракт сразу за мишенью, кончается — у детекторов.

Время от момента образования атома гафния до его попадания в детектор излучения — не больше четырех десятых секунды — в общем устраивало химиков: уже знали, что период полураспада изотопа 260104 — величина порядка десятой доли секунды. Химики должны были успеть!

Эксперименты химиков: часть вторая

К началу 1965 г. химики создали метод, при помощи которого можно было доказать идентичность химических свойств гафния и 104-го элемента. Физики, со своей стороны, научились получать атомы этого элемента десятками (а этого количества вполне достаточно для исследования) и регистрировать каждый из них. Настало время решающих опытов по химической идентификации 104-го.

Если он аналог гафния, то его тетрахлорид должен быть примерно таким же устойчивым и летучим соединением, как HfCl4. Ядра 104-го, связанные в молекулы газообразного тетрахлорида, должны пройти через весь тракт газового пробника, и через десятые доли секунды после образования каждого ядра детекторы спонтанного деления, расположенные в конце тракта, должны зафиксировать его осколки.

Если же 104-й не экагафний, детекторы не зарегистрируют ничего: образовавшиеся атомы не смогут до них добраться, химическая идентификация 104-го элемента методом носителей в газовой фазе окажется невозможной.

В газовом пробнике заменили самариевую мишень на плутониевую, в конце тракта установили детекторы спонтанного деления. Через несколько дней видоизмененный газовый пробник впервые въехал в циклотрон…

Атомы 104-го образуются не часто — опыты должны были идти долго и обязательно непрерывно: кто знает, в какой момент образуются эти атомы? В общей сложности химики провели четырнадцать экспериментов на циклотроне, в ходе которых было зарегистрировано четыре осколка спонтанного деления ядер 104-го. Это в двадцать раз меньше, чем ожидалось. В чем причина?

Проверили все расчеты — ошибки нет. Значит, нужно менять температурный режим. Температура в газовом пробнике была доведена до 350°C. Началась новая серия экспериментов. В ходе этой серии детекторы зарегистрировали восемь атомов 104-го элемента — экспериментаторы рассчитывали на шесть — десять.

После этого можно было делать выводы. Главные из них таковы. Химическим методом подтверждено открытие физиками Объединенного института ядерных исследований нового сверхтяжелого элемента № 104. Его изотоп с массовым числом 260 подвержен спонтанному делению. 104-й элемент — химический аналог гафния. Это первый тяжелый искусственный элемент, не входящий в семейство актиноидов.

Вне циклотрона и пробника

26 марта 1966 г. был закончен последний химический опыт на циклотроне, а через три дня на кафедре радиохимии Московского университета состоялась защита кандидатской диссертации на тему «Использование газообразных соединении для экспрессного непрерывного разделения продуктов ядерных реакций».

Известный физико-химик, ныне академик В.И. Гольданский внес предложение: рекомендовать кандидатскую диссертацию Иво Звары к рассмотрению на ученом совете факультета на предмет присуждения ему ученой степени доктора химических наук. Это предложение было принято, и 17 июня Иво Зваре пришлось «защищаться» вторично. А шестнадцатью днями раньше он докладывал об этой работе на заседании ученого совета Объединенного института ядерных исследований. Здесь же обсуждался вопрос о том, как назвать элемент № 104. Создатели элемента предложили назвать его курчатовием — в честь выдающегося советского физика Игоря Васильевича Курчатова. Ученый совет единогласно поддержал это предложение.

На этом хотелось бы поставить точку, как в романе со счастливым концом, но, оказалось, точку ставить рано.

Открытие 104-го элемента в Дубне было поставлено под сомнение американскими исследователями. Почему? Прежде всего потому, что период полураспада изотопа 260Ku по спонтанному делению (первоначально он был определен в 0,3 секунды, позже уточнен как величина, около 0,1 секунды) оказался несравненно больше, чем предсказывали американские теоретики.

И еще можно допустить, что существует генетическая связь между неверием американцев в курчатовий и уничтожающей, в общем-то, критикой учеными Дубны американских работ по нобелию и лоуренсию… Чем было подкреплено неверие, чем аргументирована критика американцев? В 1969–1970 гг. в Беркли начали изучать альфа-распад изотопов элемента № 104. Появились сообщения о получении трех изотопов 104-го, в том числе относительно долгоживущего изотопа 259104 (его период полураспада 4,5 секунды). Была предпринята попытка получить и спонтанно делящийся изотоп 260104 при бомбардировке кюрия ионами кислорода (96+8 = 94+10 = 104). И вот что доложил доктор Гиорсо на конференции по трансурановым элементам в Хьюстоне (1969 г.)

«На прошлой педеле мы облучили мишень из кюрия ионами кислорода… в надежде найти спонтанно делящуюся активность, которая могла бы быть обусловлена распадом 260104, если бы он имел период полураспада более короткий, чем 0,1 секунды (100 мс). Мы зарегистрировали активность с периодом полураспада между 10 и 30 мс, но мы еще не идентифицировали ее. Конечно, она могла быть обусловлена 260104, хотя кажется, что такой период полураспада слишком длинный. Нам кажется более вероятным, что период полураспада 260104 находится в микросекундной области».

И все. Научных сообщений об исследовании изотопа 261104 от группы Гиорсо не последовало. Нигде больше не упоминалось и о наблюдавшейся 30-миллисекундной активности. Тем не менее в устных выступлениях и в обзорных статьях и Сиборг, и Гиорсо не раз высказывали сомнения в правильности дубненских результатов. Их доводы не отличались конкретностью: «…я считаю, что по спонтанному делению вообще ничего определить нельзя» (Гиорсо); «…но поскольку элемент живет только десятые доли секунды, химия, естественно, но может быть убедительной» (Сиборг). Здесь уместно вспомнить, что совсем недавно, лет тридцать — сорок назад, апологетам классических методов химического анализа представлялись неубедительными результаты радиохимических исследований, проведенных на микроколичествах.

Время так же относительно, как и масса; экспресс-методы анализа короткоживущих изотопов и их соединений создаются в наши дни. И, если возникают сомнения в результатах, полученных этими методами, опровергать их надо аргументированно. Аргументы же типа «не верю» и «этого не может быть, потому что этого не может быть никогда», не убедительны, даже если их высказывают большие ученые, много, действительно много сделавшие для науки о трансурановых элементах.

1 ... 102 103 104 105 106 107 108 109 110 ... 122
Перейти на страницу:
На этой странице вы можете бесплатно скачать Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - Коллектив авторов торрент бесплатно.
Комментарии