- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Звезды: их рождение, жизнь и смерть - Иосиф Шкловский
Шрифт:
Интервал:
Закладка:
Вернемся теперь к «обычным» барстерам. Доказано, что они испускают рентгеновское излучение и в промежутках между вспышками. Существенно, что энергия, излученная между вспышками, примерно в сто раз превышает энергию, излученную при вспышках. Это обстоятельство имеет решающее значение для понимания природы рентгеновского излучения барстеров. Излучение барстеров в промежутках между вспышками обусловлено аккрецией газа от второго компонента двойной системы, подобно тому, как это происходит в массивных двойных системах. Однако, по мере накопления вещества на поверхности нейтронной звезды, возникают благоприятные условия для термоядерного взрыва на ее поверхности, вызывающего мощную вспышку рентгеновского излучения. При такой вспышке на грамм вещества выделяется c2 энергии (где = 10-3 — «упаковочный эффект» при синтезе ядер), а при аккреции на нейтронную звезду 0,1c2 эрг/г. Теперь понятно, почему энергия, излучаемая между всплесками, примерно в 100 раз превосходит энергию, излучаемую при всплесках[ 59 ].
Существует полная аналогия между барстерами и обычными новыми звездами, вспышки которых обусловлены термоядерными взрывами водорода, скапливающегося на поверхности белого карлика. Оптической астрономии давно известны пекулярные звездные объекты, являющиеся тесными двойными системами, одна из компонент которых — белый карлик. Можно провести интересную аналогию между такими системами и системами, содержащими нейтронную звезду. Заметим, что свойства тесных двойных систем зависят еще от характера перетекания вещества на компактный объект (звездный ветер, перетекание через лагранжеву точку).
У классических новых звезд дана компонента (некомпактная) — красный карлик, а другая — белый, причем перетекание вещества осуществляется через лагранжеву точку. Если же одной из компонент белого карлика является красный гигант, наблюдаются «новоподобные» звезды. Их «рентгеновским аналогом» могут служить некоторые «временные» источники, о которых речь шла выше. У карликовых новых типа U Близнецов (см. гл. 14) ядерные вспышки на поверхности белого карлика не происходят. Рентгеновским аналогом таких систем могут быть старые источники типа Скорпион Х-1 и Лебедь Х-2.
Огромное увеличение чувствительности детекторов рентгеновского излучения на космической обсерватории «Эйнштейн» открыло возможность изучать сравнительно слабые источники. Было открыто и исследовано рентгеновское излучение от многих десятков звезд — «карликовых» новых типа U Близнецов, новоподобных и других пекулярных объектов. Исключительный интерес представляет исследование обычных звезд главной последовательности, рентгеновское излучение которых обусловлено их коронами. Сравнительный анализ корон у звезд разных спектральных классов совершенно по-новому поставил проблему солнечной активности.
Вернемся теперь к проблеме барстеров. Как объяснить тот удивительный факт, что более 1/3 их входят в состав шаровых скоплений, в которых заключена всего 1/3000 всех старых звезд? Скорее всего, такие двойные системы (красный карлик плюс нейтронная звезда) образовались только при захватах до этого одиночных звезд. При этом избыток энергии шел на возбуждение колебаний в толще красного карлика. Очевидно, захваты могли происходить только там, где звездная плотность очень велика, а относительные скорости малы. Такие условия реализуются в ядрах шаровых скоплений. Некоторые барстеры со временем могли покидать шаровые скопления. Да и шаровые скопления могли разрушаться. Именно таким образом могли возникнуть барстеры, не связанные с шаровыми скоплениями.
Глава 24 Черные дыры и гравитационные волны
Основоположник теории внутреннего строения звезд выдающийся английский ученый А. С. Эддингтон был, как известно, крупнейшим знатоком общей теории относительности. Он впервые во время солнечного затмения в 1919 г. измерил предсказанное Эйнштейном отклонение светового луча от удаленной звезды в поле тяготения Солнца. Тем интереснее полное горького пессимизма замечание Эддингтона, что общая теория относительности — это «красивый, но бесплодный цветок». Это замечание во времена Эддингтона было совершенно справедливо. Действительно, если специальная теория относительности буквально за несколько лет «завоевала» физику, а в течение последних десятилетий и технику (например, электронику), то совсем по-другому сложилась судьба общей теории относительности. Похоже на то, что она была создана гением Эйнштейна явно преждевременно. В самом деле, со времени публикации окончательного варианта этой теории (1916 г.) прошло около 70 лет. Этот огромный период в истории науки можно разделить на две части: до 1963 г. и после 1963 г. В течение первого периода общая теория относительности занимала весьма обособленное положение в физике и астрономии, будучи с ними почти не связанной. Столь необычная ситуация объясняется ничтожно малой величиной поправок, которую в ньютонову теорию гравитации вносит общая теория относительности в «нормальных» лабораторных или космических условиях. В самом деле, эти поправки по порядку величины равны отношению ньютоновского гравитационного потенциала к квадрату скорости света, т. е. GM/c2R. Можно убедиться, что почти для всех объектов Галактики эти поправки меньше, чем 10-6, и только для белых карликов с их сравнительно высоким гравитационным потенциалом поправки достигают 3 10-4. В то же время применение эффектов общей теории относительности к космологии (Фридман) не могло контролироваться адекватными наблюдениями галактик, так как эти наблюдения ограничивались красными смещениями / = z 10-2.
В сущности говоря, все величественное здание теории опиралось на три предсказанных ею эффекта, которые были настолько малы, что измерялись только на пределе возможности тогдашней измерительной техники. Речь идет об отклонении светового луча в поле солнечного тяготения, о гравитационном красном смещении и об очень медленном движении перигелия Меркурия. Диспропорция между величием теоретических построений и ничтожностью конкретных приложений была разительной.
Ситуация резко изменилась начиная с 1963 г., когда были открыты квазары с их огромным красным смещением, несомненно, космологической природы. Переменность оптического и радиоизлучения этих объектов приводит к выводу об их компактности, что в сочетании с их большими массами позволяет ожидать значительных релятивистских поправок к их гравитационному потенциалу. В 1965 г. было открыто реликтовое излучение Вселенной, отражающее ее физическое состояние, когда она была в десятки тысяч раз моложе, чем сейчас. Тем самым релятивистская космология получила настоящий фундамент, основывающийся на конкретных астрономических наблюдениях. Еще через два года, в 1967 г., были открыты пульсары, оказавшиеся нейтронными звездами. Для них поправки, вносимые общей теорией относительности в ньютонову теорию гравитации, уже нельзя считать малыми. Наконец, в 1971 г. были открыты рентгеновские звезды, которые сделали вполне реальной проблему обнаружения черных дыр — объектов, которые просто нельзя понять без общей теории относительности.
Все эти выдающиеся открытия наблюдательной астрономии сделали наконец-то общую теорию относительности необходимой для изучения и понимания фундаментальных свойств Вселенной. С другой стороны, бурное развитие техники физических измерений, являющееся следствием переживаемой нами научно-технической революции, резко увеличило возможности наблюдательной проверки эффектов общей теории относительности. Если раньше экспериментальным основанием теории относительности было измерение известных трех эффектов (см. выше), то сейчас можно указать по крайней мере на 20 различных опытов, из которых 15 уже выполнены. Для выполнения этих весьма важных экспериментов широко используются достижения радиоастрономии, лазерной и космической техники, радиолокации. Например, ожидаемое различие в ходе часов на поверхности Земли и на спутнике, движущемся по синхронной орбите, равно P/P 5 10-10, в то время как стабильность водородных мазерных часов составляет P/P 5 10-13 за много месяцев. Приведем еще один пример. Согласно общей теории относительности, расстояние между Землей и Луней должно периодически меняться с амплитудой около 1 м, в то время как современная лазерная техника позволяет измерить это расстояние с точностью до 15 см. Наконец, стоит упомянуть, что отклонение луча в поле тяготения Солнца сейчас с наибольшей точностью измеряется радиоинтерферометрическим методом, причем источниками радиоизлучения являются квазары. В ближайшие годы точность этих измерений будет доведена до 10-3 от измеряемой величины. Новые прецизионные измерения позволят уточнить общую теорию тяготения, которую, как всякую живую область науки, отнюдь нельзя считать законченной и раз навсегда данной.

