- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Ранняя философия Эдмунда Гуссерля (Галле, 1887–1901) - Неля Васильевна Мотрошилова
Шрифт:
Интервал:
Закладка:
Далее, Гуссерль верно отмечает: «Символическое образование понятий включает сильную тенденцию наших способностей представления к идеализации» (2238–10). Почему и в каком смысле? Ответ Гуссерля: «Фактически мы не можем, двигаясь в бесконечность (in infinitum), образовывать требуемые повторения и выстраивать их в ряды: нам недостает времени и сил для постоянно обновляющейся духовной деятельности, как и знаков для различения её образований. Вследствие этого, мы можем идеализирующим образом абстрагироваться от этих ограниченностей наших способностей и также в этом отношении конципировать символические понятия… Ведь всякое новое образование множеств есть часть ранее образованных – и это имеет значение также в отношении их чисел. Множество мыслимых числовых спецификаций – как и многообразие мыслимых ступеней множеств (Mengenstufen) – бесконечно» (22311–22).
Казалось бы, связанность сознания прежними идеями относительно множеств и способов представливания (Vorstellen) множеств (Mengen), может только повредить делу тогда, когда речь идет о движении человеческой мысли к множествам бесконечного ряда. Но в действительности проблема, по Гуссерлю, решается иначе. «В символическом, но вполне определенном смысле мы можем говорить о числах там, где представления в собственном (eigertlichen) смысле отказывают нам, и на этой ступени мы даже в состоянии устанавливать идеальную бесконечность числовых рядов. И вместе с этим наше исследование ни в коей мере не заканчивается. Отдаленной символизацией, которой мы теперь достигли, мы не можем однако – при такой смутной всеобщности – воспользоваться для целей счета и расчета. Мы нуждаемся для этого в богатых содержанием символических образованиях, которые – и при острой обособленности истинных, но нам недоступных числовых понятий “в себе” – вполне способны быть их представителями» (22326–33)
Далее, на двадцати страницах XII главы Гуссерль затрагивает большое количество весьма конкретных проблем арифметики вообще, философии арифметики, в частности, которые он увязывает с тематикой «символизирования». Они имеют в высшей степени конкретный, специальный характер, почему считаю возможным не осуществлять столь же подробный, как прежде, текстологический разбор ФА, а ограничиться суммирующим перечнем и краткой проблемной характеристикой соответствующих подразделов главы.
«Бессистемные числовые символизации»
Проделаем, предлагает Гуссерль, мысленный эксперимент исходя из того, что число 10 было бы «последним представляемым числом» (2241). И в этом случае было бы возможно при счете не ограничиться множествами, которые исчерпывались бы цифрами до 10 единиц. Ибо было бы возможно создавать, скажем, символические числовые образования, как 10+5; 9+6+8, 7+10+5 и т. д. «Композиции знаков – наша опора (в оригинале – die Krücke, костыли. – Н. М.)» (22417–18). Далее, мы могли бы образовывать сочетания с помощью других знаков, т. е. символически, например: p=10+5, а дальше p+8=p' и потом p'+10=p, когда «всякое более позднее образование имело бы свой фундамент в более раннем» (2259–10). Но подобные способы бессистемного расширения числовых образований неплодотворны, ибо «была бы искажена (verfeht) главная цель всякого счета» (22536–37).
Естественные числовые ряды
Именно в силу практической неплодотворности бессистемных, произвольно, наугад порождаемых числовых образований мы нуждаемся, уверен Гуссерль, в «строго систематическом принципе создания числовых форм» (2262). Этот принцип должен быть однородным и однозначным, не допускающим произвольных, двойственных толкований. Процесс их образования тоже должен быть однозначным (22610–11).
И тогда удовлетворять этим требованиям сможет, по Гуссерлю, такое образование новых чисел, при котором совершается прибавление одной единицы к уже образованным числам. Так и возникает числовой ряд: 1; 2=1+1; 3=2+1; 4=3+1; …10=9+1. (См. 22623–30). И тогда очень несложно выйти за границы как бы предположенного ряда до 10 единиц. «Так мы обретаем дефиниции ряда числовых дефиниций, простирающихся в бесконечность, а через их посредство можем исчислять любое произвольное множество, посредством которого объем образования понятий и обозначений простирается достаточно далеко» (22639 – 2271–4). Мы добиваемся этого благодаря прочной «однозначности метода» (22710–11). Ибо с какого члена ряда мы бы ни начали и в каком бы направлении ни продвигались вперед, результат не изменится.
Гуссерлю важно подчеркнуть также, что возможность продолжения (die Fortzetbarkeit) подобных числовых рядов в бесконечность «ничем не ограничена» (22724–25). Правда, в такой практике есть (и видимо, были в реальной истории) свои сложности, например, отыскание всё новых обозначений. Но они так или иначе преодолевались преодолеваются.
12. Числовые системы
Гуссерль задает простой и логичный вопрос, ответ на который проливает свет и на суть, логику, на характер исторического процесса формирования числовых систем, и на интересующую его в этой главе проблему символизации как неотъемлемую сторону арифметических процедур. «На каком же пути мы должны воплотить в жизнь тот идеал числовых обозначений, который делает возможным практическое подчинение (нам) числовых сфер в возрастающем объеме; как найти прозрачный, простой принцип, позволяющий из немногих основополагающих знаков сконструировать такую числовую систему, которая определяла бы каждому определенному числу удобные легко различимые числовые знаки, одновременно четко выражающие их систематическое место в числовом ряду?» (22822–29).
На первый взгляд может показаться, рассуждает автор ФА, что речь тут идет лишь «о номенклатуре», т. е. обозначениях. Но трудности залегают намного глубже (22830–33). Дело не только в обозначениях, логично полагает Гуссерль. Оно упирается в нахождение основополагающих знаков (Grundzeichen). «Но и еще один угол зрения очень важен», (2291) – продолжает автор ФА. Мы установили, что по идее (der Idee nach) каждый числовой ряд может быть безгранично продолжен. «Ну хорошо (ganz wohl)», – соглашаясь, продолжает Гуссерль (2293). Но ведь в действительности возникает много осложнений. Дело упирается в нахождение «другого метода образования понятий» (22919), который был бы более объемлющим (umfassender) и по возможности более легким, операциональным.
Гуссерль и пытается «сконструировать» такой метод, отвечающий требованиям «число-образования и число-обозначения» (22931–33). Разобраться в том, что автор ФА предлагает на этих страницах своей книги, очень сложно, да это доступно и интересно скорее для узких специалистов, каковым я не являюсь и к которым вряд ли будут относиться возможные читатели моей книги. Во всяком случае, обращение к литературе вопроса не дало никаких результатов: страницы 230–244 ФА в известных мне сочинениях интерпретаторов не обсуждаются – видимо, по указанным выше причинам. Остается надеяться на будущее – на то, что узкий философско-математический смысл идей Гуссерля будет расшифрован на современном уровне.
Перейдем к окончанию XII главы, где Гуссерль – и это примечательно – включает в свое рассмотрение, до сих пор чисто философско-математическое, логико-математические (тесно связанные, впрочем, с коренными для математики вообще, для проблем числа,

