- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Занимательная электроника - Юрий Ревич
Шрифт:
Интервал:
Закладка:
Правда, неудобство в такой простейшей схеме заключается в том, что выходные напряжения будут с обратным знаком, но эта проблема легко решается. На рис. 17.3, в показан простейший вариант ЦАП с «нормальным» положительным выходом. Проанализировать работу этой схемы я предоставляю читателю самостоятельно — она, вообще-то, даже проще, чем инвертирующий вариант. Недостатком этого варианта по сравнению с инвертирующим будет то, что коэффициент усиления не регулируется, и масштаб будет определяться только величиной Uоп. Но и этот недостаток легко исправить небольшим усложнением схемы. Такие ЦАП называют еще перемножающими.
* * *
Заметки на полях
Я не буду рассматривать серийные интегральные схемы ЦАП (например, 572ПА1), основанные на этом принципе, потому что в целом они работают так же, а ЦАП сами по себе, без использования в составе АЦП, требуются нечасто. Тем не менее, скажем несколько слов о проблемах, связанных с метрологией. Ясно, что получить точные значения резисторов при изготовлении микросхемы подобного ЦАП непросто, поэтому на практике абсолютные величины R могут иметь довольно большой разброс. Между собой номиналы их тщательно согласовывают с помощью лазерной подгонки. Собственное сопротивление ключей также может оказывать большое влияние на работу схемы, особенно в старших разрядах, где токи больше, чем в младших. В интегральном исполнении даже делают эти ключи разными — в старших разрядах ставят более мощные с меньшим сопротивлением. А если попытаться сделать самодельный ЦАП на основе упомянутых ранее 516КТЗ, то величина R должна составлять десятки килоом, не менее, иначе ключи начнут вносить слишком большую погрешность.
* * *
Еще один момент связан с получением стабильного опорного напряжения, поскольку это непосредственно сказывается на точности преобразования, причем абсолютно для всех АЦП и ЦАП, как мы увидим далее. В настоящее время успехи электроники позволили почти забыть про эту проблему — все крупные производители выпускают источники опорного напряжения, позволяющие достигать стабильности порядка 16 разрядов (т. е. 65 536 градаций сигнала). К тому же всегда можно исхитриться построить схему так, чтобы измерения стали относительными.
Быстродействие ЦАП рассмотренного типа в основном определяется быстродействием ключей и типом применяемой логики, и в случае КМОП-ключей не слишком высокое — примерно такое же, как у обычных КМОП-элементов.
Большинство интегральных ЦАП построено с использованием описанного принципа суммирования взвешенных токов или напряжений. Другой класс цифроаналоговых преобразователей составляют интегрирующие ЦАП, которые служат для преобразования величин, меняющихся во времени. Эти ЦАП в идеале позволяют сразу получить действительно аналоговый, непрерывный сигнал без признаков ступенек.
АЦПНоменклатура аналого-цифровых преобразователей существенно больше, чем ЦАП. Однако все разнообразие их типов можно свести к трем разновидностям: это АЦП параллельного действия, АЦП последовательного приближения и интегрирующие АЦП. Рассмотрим их по порядку.
АЦП параллельного действия
АЦП параллельного действия — это зеркально отраженный простейший ЦАП на основе дешифратора, описанный в предыдущем разделе. В таких АЦП имеется делитель из k одинаковых резисторов, к каждой ступени которого подключен компаратор, сравнивающий напряжение на делителе с входным сигналом. Выходы компараторов образуют равномерный код, вроде того, что используется для управления шкальными индикаторами в описанном ранее простейшем ЦАП. Эти выходы подключены к шифратору с k входами, который преобразует этот код в двоичный с числом разрядов n, равным Iog2(k).
Трудности на этом пути уже описывались: схема получается крайне громоздкая, для n-разрядного кода требуется k = 2n резисторов и компараторов, причем резисторов точно согласованных между собой, и компараторов также с как можно более идентичными характеристиками. Поэтому такие АЦП с разрядностью, большей 8, почти и не выпускают. А зачем их делают вообще? По одной простой причине — этот тип АЦП является самым быстродействующим из всех, преобразование происходит фактически мгновенно и лимитируется только быстродействием применяемых компараторов и логики. Фактическое быстродействие АЦП такого типа может составлять десятки и сотни мегагерц (наиболее экстремальные типы, как МАХ108, допускают частоты до единиц гигагерц). Все остальные типы АЦП, как мы увидим, работают значительно медленнее.
АЦП последовательного приближения
АЦП последовательного приближения мы рассмотрим чуть подробнее — ввиду их практической важности. Хотя самим в настоящее время такие АЦП строить также не приходится, но для успешного использования их в интегральном исполнении следует хорошо понимать, как они работают. Именно такого типа АЦП обычно встроены в микроконтроллеры (см. главы 18 и 22).
Главная деталь АЦП последовательного приближения — ЦАП нужной разрядности (именно поэтому мы рассматривали ЦАП раньше, чем АЦП). На его цифровые входы подается код по определенному правилу, о котором далее. Выход ЦАП соединяется с одним из входов компаратора, на другой вход которого подается преобразуемое напряжение. Результат сравнения подается на схему управления, которая связана с регистром — формирователем кодов.
Есть несколько вариантов реализации процедуры преобразования. Самый простой выглядит следующим образом: сначала все разряды кода равны нулю. В первом такте самый старший разряд устанавливается в единицу. Если выход ЦАП при этом превысил входное напряжение, т. е. компаратор перебросился в противоположное состояние, то разряд возвращается в состояние логического нуля, в противном же случае он остается в состоянии логической единицы. В следующем такте процедуру повторяют для следующего по старшинству разряда. Такой метод позволяет за число тактов, равное числу разрядов, сформировать в регистре код, соответствующий входному напряжению. Способ довольно экономичен в смысле временных затрат, однако имеет один существенный недостаток — если за время преобразования входное напряжение меняется, то схема может ошибаться, причем иногда вплоть до полного сбоя. Поэтому в такой схеме обязательно приходится ставить на входе устройство выборки-хранения, о котором далее.
В другой модификации этой же схемы для формирования кодов используется реверсивный счетчик, подобный 561ИЕ11, с нужным числом разрядов. Выход компаратора попросту подключают к выводу переключения направления счета. Изначально счетчик сбрасывают в нули во всех разрядах, после чего подают на него тактовые импульсы. Как только счетчик досчитает до соответствующего значения кода, и выход ЦАП превысит входное напряжение, компаратор переключает направление счета, и счетчик отрабатывает назад. После окончания этого периода установления, если напряжение на входе не меняется, величина кода все время колеблется в пределах младшего разряда. Здесь выбросы не так страшны, но большое время установления и неизвестное заранее время реакции на быстрые изменения входного сигнала являются недостатками такого АЦП, получившего название следящего.
Теперь об устройствах выборки-хранения (УВХ). В простейшем случае это все тот же аналоговый электронный ключ, на вход которого подается измеряемый сигнал, а на выходе стоит конденсатор. До начала измерения ключ открыт, и напряжение на конденсаторе повторяет входное напряжение со всеми его изменениями. В момент начала измерения ключ запирается, и в дальнейшем в качестве измеряемого фигурирует уже напряжение, запасенное на конденсаторе, а изменения на входе на измерительную схему не влияют.
Все, казалось бы, просто, но наличие УВХ, прежде всего, достаточно сильно замедляет процесс, т. к. ключ имеет конечное сопротивление и вместе с конденсатором образует ФНЧ, который требует времени для установления нового значения напряжения и может искажать форму сигнала. Кроме того, как бы ни было велико входное сопротивление компаратора, оно конечно, да и ключ также имеет не бесконечно большое сопротивление в закрытом состоянии. Иногда в схеме присутствует и элемент для принудительного сброса конденсатора (обнуления его), наконец, конденсатор также имеет собственные утечки — все это вынуждает увеличивать емкость конденсатора и еще больше снижать быстродействие схемы. В интегральных АЦП подобного рода нередко даже предоставляется выбор между точностью и быстродействием.
Кроме выборки-хранения, в АЦП последовательного приближения требуется также время на вывод данных и подготовку к следующему циклу измерения. Все указанные причины приводят к тому, что наиболее распространенные 10-12-разрядные АЦП последовательного приближения имеют реальное быстродействие не выше 50-200 кГц. Как пример достаточно продвинутой модели приведем МАХ1132, который имеет разрешение 16 бит при частоте выборок 200 кГц. Тем не менее, АЦП последовательного приближения очень распространены и применяются там, где требуется средняя точность при достаточно высоком быстродействии.

