Создатели искусственного гения. О бунтарях, которые наделили интеллектом Google, Facebook и весь мир - Кейд Метц
Шрифт:
Интервал:
Закладка:
У Хинтона было очень мало опыта в области информатики, и он совершенно не интересовался математикой, включая линейную алгебру, на которую опирается теория нейронных сетей. Иногда он практиковал то, что сам называл «дифференцированием на доверии». Он придумывал идею, включая систему дифференциальных уравнений, на которые она опиралась, и просто предполагал, что математически там все безупречно, предоставляя другим трудиться над расчетами, необходимыми для того, чтобы удостовериться, что это действительно так, и лишь в крайних случаях снисходил до того, чтобы решать уравнения самостоятельно. Но он имел твердую уверенность в том, как работает мозг – и как машины могли бы имитировать работу мозга. Когда он сообщал кому-нибудь из научного сообщества, что занимается нейронными сетями, его собеседники неизменно ссылались на книгу Мински и Пейперта. «Нейронные сети опровергнуты, – говорили ему. – Лучше бы вам заняться чем-нибудь другим». Но если других ученых книга Мински и Пейперта все дальше отталкивала от нейронных сетей, то на Хинтона она оказала противоположное действие. Он прочитал эту книгу, уже будучи в Эдинбурге. Ему казалось, что «Перцептроны», описанные Мински и Пейпертом, были скорее карикатурой на работу Розенблатта. Они отказывались признать, что Розенблатт и сам видел в своей технологии те же самые недостатки и ограничения, которые видели они. Другое дело, что Розенблатту недоставало их мастерства в описании этих недостатков, и, возможно, именно по этой причине он не мог к ним подступиться. Он был не из тех, кого остановит неспособность доказать справедливость своих теорий. Хинтон полагал, что, четко и красноречиво указав на ограничения, присущие технологии Розенблатта, Мински и Пейперт облегчили будущим исследователям задачу преодоления описанных ими проблем.
Но для этого потребуется еще десять лет.
* * *
В 1971 году, в тот самый год, когда Хинтон поступил в аспирантуру Эдинбургского университета, британское правительство заинтересовалось прогрессом, достигнутым в разработках искусственного интеллекта, и заказало соответствующее исследование76. Результат оказался неутешительный. «Большинство сотрудников, занимающихся искусственным интеллектом77 или работающих в смежных областях, признаются, что разочарованы тем, чего им удалось достичь за последние двадцать пять лет, – говорится в отчете. – Ни в одном из направлений не были достигнуты сколько-нибудь существенные результаты, которые бы соответствовали ожиданиям». По этой причине правительство решило урезать финансирование, и наступила «зима искусственного интеллекта», как впоследствии назвали этот период. Оправдываясь тем, что, несмотря на ажиотаж, поднятый вокруг тематики ИИ, научно-технические достижения в этой области оставались более чем скромными, государственные чиновники отказывали ученым в дополнительных инвестициях, что ввергло большую часть таких исследований в «спячку» и в еще большей степени замедлило прогресс. Название этому периоду было дано по аналогии с «ядерной зимой» – последствием ядерной войны, когда небо затягивается дымом и пеплом и солнечные лучи на протяжении многих лет не могут пробиться к поверхности земли. К тому времени, когда Хинтон закончил работу над своей диссертацией, от той научной дисциплины, где он работал, осталось практически пепелище. Тогда же умер его отец. «Старый хрыч умер до того, как я добился успеха, – говорит Хинтон. – Да еще у него был рак с высоким уровнем риска передачи по наследству. Таким образом, он напоследок и меня решил поскорее уморить».
«Зима искусственного интеллекта» становилась все холоднее, и закончивший аспирантуру Хинтон принялся за поиски работы. Только один университет пригласил его на собеседование, и у него не осталось другого выбора, как обратить свой взор на заграничные вузы, включая американские. В США исследования ИИ тоже угасли, поскольку американские чиновники пришли к тем же неутешительным выводам, что и их британские коллеги, и сократили финансирование университетов. Но на самом юге Калифорнии, к своему изумлению, Хинтон нашел-таки небольшую группу людей, которые верили в ту же идею, что и он сам.
Они называли себя «группой PDP». Понятие PDP, что расшифровывалось как «параллельно распределенная обработка», служило фактически синонимом для таких понятий, как «перцептроны», «нейронные сети» или «коннекционизм». И здесь еще имелась игра слов. В те годы – в конце 1970-х – аббревиатурой PDP обозначался компьютерный чип, который использовался в самых мощных машинах того времени. Но люди, называвшие себя «группой PDP», компьютерщиками не были. Они даже разработчиками ИИ себя не считали. Группа включала в себя нескольких специалистов с кафедры психологии Калифорнийского университета в Сан-Диего и, как минимум, одного нейробиолога, Фрэнсиса Крика из Института биологических исследований имени Солка, расположенного буквально через дорогу от университетского городка. Прежде чем обратить свое внимание на исследования мозга, Крик удостоился Нобелевской премии за открытие структуры молекулы ДНК. Осенью 1979 года он опубликовал на страницах журнала Scientific American призыв к широкому научному сообществу78 хотя бы попытаться понять, как работает человеческий мозг. Хинтон, занявший место постдока в Калифорнийском университете в Сан-Диего, испытал своего рода культурно-научный шок. Если в научном сообществе Великобритании царила интеллектуальная монокультура, то в США хватало место для приверженцев самых разных научных взглядов. «Здесь способны уживаться между собой самые разные точки зрения», – говорит он. Здесь, если он сообщал кому-то, что занимается нейронными сетями, его слушали.
Между Фрэнком Розенблаттом и тем, чем занимались в Сан-Диего, существовала прямая связь. В 1960-е годы Розенблатт и другие ученые рассчитывали создать искусственную нейронную сеть нового типа, которая бы состояла из нескольких «слоев» нейронов. В 1980-е годы на это же надеялись ученые, работавшие в Сан-Диего. «Перцептрон» был однослойной нейронной сетью, то есть был только один слой нейронов между входящей информацией (большая буква А, напечатанная на картоне) и выходящей (сообщение компьютера, что он видит букву А). Но Розенблатт полагал, что, если удастся построить многослойную сеть, где информация будет передаваться с одного слоя на другой, эта система сможет научиться распознавать гораздо более сложные паттерны, чем мог «Перцептрон». Иными словами, эта система будет в большей мере походить на человеческий мозг. Когда «Перцептрон» анализировал картонку с напечатанной на ней буквой А, каждый из нейронов изучал одну из точек на изображении, пытаясь понять, является ли данная точка частью трех линий, составляющих букву А. Но для многослойной сети это было бы только отправным моментом. Покажите этой системе, скажем, фотографию собаки, и за этим последует гораздо более сложный анализ. Первый слой нейронов сканирует каждый пиксель изображения. Он черный или белый, коричневый или желтый? Затем этот первый слой передает ту информацию, которую он идентифицировал, второму слою. Нейроны второго слоя высматривают в полученной информации