- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Астрономия. Популярные лекции - Владимир Георгиевич Сурдин
Шрифт:
Интервал:
Закладка:
Первая часть представляет самый простой подход к изучению движения небесных тел. Поскольку большие небесные тела практически шарообразны (о причинах этого я скажу ниже), их притяжение друг к другу можно описать притяжением материальных точек, расположенных в центрах тел и содержащих всю их массу (это мы тоже сегодня докажем). В этом случае неплохо работает очень простой, известный даже школьникам закон Ньютона. Правда, он не вполне правилен, общая теория относительности (ОТО) корректнее описывает гравитацию, но для нас это пока несущественно.
Рис. 2.1. Различные силы, воздействующие на планету.
Есть более тонкий подход. Он учитывает, что тела являются протяженными и что все их конкретные точки находятся на разных расстояниях от соседнего тела. Значит, в общем случае нельзя подставлять одно и то же расстояние в первую формулу (рис. 2.1), надо учитывать зависимость гравитационной силы от расстояния до притягивающего тела (вторая формула). Это уже второе приближение к истине, и называется оно теорией приливов. Приливы — вообще штука интересная и очень важная, но об этом — в одной из следующих лекций. А сегодня будем говорить только о небесной механике.
Самая слабая сила
Давайте посмотрим на запись закона всемирного тяготения Ньютона, связывающего силу притяжения F между двумя материальными точками, в которых сосредоточены массы M и m, разделяемые расстоянием R: F = GMm/R2, — и осознáем одну неприятную вещь. А именно: значение коэффициента пропорциональности G = 6,672 ·10–11 H · м2/кг2, называемого гравитационной постоянной, очень малó в знакомых нам единицах измерения (метры, килограммы, ньютоны). Если сто граммов (столько весит полстакана воды) положить на ладошку — это будет сила тяжести в один ньютон.
Прикинем, каковы гравитационные силы. Пусть каждый из вас весит порядка ста килограммов (не хочу никого обидеть, а лишь округляю для простоты вычислений) и вы находитесь в аудитории на расстоянии 1 метра друг от друга. Подставляем эти значения в формулу и находим силу взаимного притяжения: F ~10–10 · 100 · 100/12 = 10–6 Н, это одна миллионная от силы в 100 граммов, или 1/10 миллиграмма. Это притяжение друг к другу вы не ощущаете, хотя закон говорит, что оно есть. То есть гравитация — самая слабая из всех природных сил, она практически неощутима. Почему же мы чувствуем, что нас притягивает к сиденью?
Очень малое значение гравитационного коэффициента говорит о том, что только большие массы могут ощутимо взаимодействовать друг с другом. Например, масса всей Земли — большая, поэтому мы ощущаем притяжение к ней. А сидя рядом друг с другом, даже и не догадываемся, что существует сила гравитации.
Есть и другая особенность. Если сравнить значение этой физической константы с другими, например зарядом электрона e = 1,60217739 · 10–19 Кл, что сразу бросается в глаза? Огромная разница в количестве значащих цифр. Естественно задать вопрос: электроном, значит, физики интересуются, измерили его заряд до десяти значащих цифр, а гравитацию почему-то проигнорировали? Почему они не хотят измерить ее точно?
Отнюдь нет — хотят, но не могут. Ведь в формулу наряду с G входит величина M, но откуда мы можем знать массу Земли — кто-то ее взвешивал? Ее ведь на весы не положишь. Ускорение свободного падения a = F/m, а значит, и произведение G · M мы можем измерить точно. Но чтобы отделить их друг от друга, надо действовать как-то по-другому. Например, можно сначала взвесить тело на весах, а потом посмотреть, как оно притягивает соседей. Для этого «древний» английский физик Дж. Мичелл (1793) придумал крутильные весы (рис. 2.2, 2.3) — очень чувствительный прибор, с помощью которого другой английский физик, Г. Кавендиш (1798), впервые измерил силу гравитационного притяжения двух лабораторных тел и определил значение гравитационной постоянной Ньютона. В нашем институте (Государственный астрономический институт им. П. К. Штернберга, МГУ) сделали такую же и потом очень долго мучились, чтобы решить типичную для физиков проблему: отделить от изучаемого явления все паразитные эффекты.
Рис. 2.2. Схема крутильных весов, на которых Генри Кавендиш измерял гравитационную силу.
Сначала в этой константе была уверенно измерена только одна значащая цифра, в XIX веке узнали вторую, в середине XX века появился третий знак, совсем недавно — четвертый. Пятый еще пока пытаются выяснить: даже при использовании самых лучших методов он у всех определяется по-разному, большей точности достичь не получается.
Рис. 2.3. Принципиальная схема крутильных весов.
Движение двух тел
Единственное тело в абсолютной пустоте будет лететь по прямой, потому что никакие внешние силы на него не действуют, — это случай тривиальный и неинтересный. А простейшей задачей небесной механики считается задача двух гравитационно взаимодействующих тел. Но ее можно еще упростить, если взять одно тело очень массивное, а другое очень маленькое. Малое тело движется под влиянием центростремительного ускорения, а большому безразлично, что там вокруг него бегает, фактически оно не «чувствует» чужого присутствия и поэтому неподвижно. Эта ситуация называется задачей одного тела в центральном гравитационном поле (рис. 2.4).
Рис. 2.4. Задача двух тел начинается с задачи о движении одного тела в центральном поле.
Рис. 2.5. Легкий спутник на круговой орбите очень большого радиуса.
Если начало системы координат совместить с массивным телом, то вследствие его неподвижности такая система координат будет инерциальной. И это может оказаться очень полезным. Например, для космического аппарата мы можем записать, что действующее на него центростремительное ускорение равно отношению силы гравитационного притяжения к его массе:
Если он обращается на достаточно дальней круговой орбите (рис. 2.5), то, выполнив простое преобразование этой формулы, можно однозначно связать орбитальный период с массой притягивающего тела. Собственно говоря, это единственный надежный метод для определения массы планеты:
Но задача становится сложнее, когда спутник находится близко к планете: при этом уже нельзя пренебрегать ее размером и формой

