- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
30 лет - ни да, ни нет - Герман Смирнов


- Жанр: Научные и научно-популярные книги / Прочая научная литература
- Название: 30 лет - ни да, ни нет
- Автор: Герман Смирнов
- Возрастные ограничения: (18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Шрифт:
Интервал:
Закладка:
Смирнов Герман
30 лет - ни да, ни нет
По следам сенсаций
Герман СМИРНОВ, инженер
30 лет - ни да, ни нет
На подборку материалов о "чуде в Бабьегородском переулке", опубликованную в "ТМ" № 9 за 1988 год, продолжаются отклики. Не утихают, как видим, давние страсти. Снова идут в ход старые объяснения, соображения и возражения. Снова спорят не о той установке и не о том эксперименте, в котором получался новый необычный эффект. Снова проявляется поразительная глухота к тому, что говорят оппоненты. А заодно вскрылось и другое: далеко не все читатели ясно представляют себе, что такое тепловой насос; как устроен полупроводниковый термоэлектрический нагреватель и что именно произошло в Бабьегородском переулке в 1959 году.
В 1852 году английский ученый лорд Кельвин предложил отапливать помещения с помощью машины, названной им тепловым насосом. В принципе это тот же тепловой двигатель, но если в нем рабочее тело нагревается и сжимается за счет топлива, а при расширении, совершая полезную работу, охлаждается за счет атмосферы, то в тепловом насосе, напротив, оно нагревается от сжатия, отдает теплоту отапливаемому помещению, затем расширяется, охлаждаясь ниже температуры уличного воздуха, и нагревается за счет тепла атмосферы.
Решив сравнить отопление с помощью теплового насоса с печным отоплением, ученый получил удивительные результаты. Образно говоря, каждая единица механической работы, подведенная к идеальному тепловому насосу, прежде чем попасть в отапливаемое помещение, "прихватывает" 5-8 эквивалентных единиц теплоты из уличного воздуха.
Сжигая в печке какое-то количество топлива, можно подвести к воздуху комнаты, скажем, 1 ккал тепла. Если то же количество топлива сжечь в топке теплового двигателя, то в мехническую работу удастся превратить лишь часть этого тепла, ну, процентов 20, что эквивалентно 85 кгм. Подведем теперь эти 85 кгм к тепловому насосу, и он "накачает" в помещение минимум в 6 раз больше теплоты, то есть 510 кгм, или 1,2 ккал. Вместо 1 ккал - 1,2?!
Понять принцип действия теплового насоса поможет такая аналогия. Скажем, нам нужно поддерживать постоянным уровень воды в дырявом бассейне, находящемся на 10 м выше уровня моря. Воспользуемся водой из горного озера на высоте 100 м. Можно пустить ее прямо в бассейн. Но есть другой путь: заставить воду из озера вращать гидротурбину, соединенную с насосом, поднимащим воду из моря в бассейн. Ясно, что в первом случае 1 кг воды из озера даст 1 кг воды в бассейне. Во втором случае все будет иначе: 1 кг воды, падая с высоты 100 м, произведет с помощью гидротурбины 100 кгм работы. Подведенные к насосу, они поднимут из моря на высоту 10 м 10 кг воды!
Но если уровень бассейна и горного озера близки, а КПД турбины и насоса невелики, овчинка может не стоить выделки. Так, кстати, и получилось с затеей лорда Кельвина. Его отопительная машина оказалась малоэкономичной, громоздкой и ненадежной. Она не смогла конкурировать с дешевым угольным отоплением. Идея Кельвина была оставлена на сто лет. Возрождению ее в наше время способствовало совершенствование холодильных устройств.
В сущности, холодильник и тепловой насос - одна и та же машина, но только первая нагревает помещение, откачивая теплоту из холодильной камеры, а вторая - из окружающей среды: речной или морской воды, почвы или атмосферного воздуха.
Ценное достоинство теплового насоса в том, что он в отличие от печки обратимая машина: идеальный кондиционер, способный работать круглый год, зимой нагревая помещение, а летом охлаждая его. Долгое время широкое распространение таких устройств сдерживалось тем, что двигатели, насосы, компрессоры и другое оборудование стоили гораздо дороже обычных печей. Радикальное изменение в состояние дел было внесено быстрым развитием полупроводниковой техники...
В 1821 году немецкий физик Зеебек обнаружил, что если составить цепь из двух разнородных металлических проводников и нагревать один из спаев, то в ней потечет электрический ток. Возникающее при этом напряжение очень невелико: при перепаде температур в 100°С оно в лучшем случае составляет около сотой доли вольта.
Через 13 лет француз Пельтье показал, что эффект Зеебека обратим: пропуская через цепь постоянный ток, можно получить нагрев одного спая и охлаждение другого, правда, весьма незначительные. Возникает мысль: нельзя ли усилить эффект проводников за счет их утолщения, снизив электрическое сопротивление? Однако при этом увеличивается тепловой поток от горячего спая к холодному, что ведет к выравниванию температур спаев и ослаблению эффекта Пельтье. Стало ясно: для создания достаточно мощных термоэлектрических устройств нужны материалы, которые при высокой электропроводности плохо проводили бы тепло. И они нашлись среди полупроводников. Термоэлектродвижущая сила в некоторых из них в сотни раз меньше, чем у металлов. В середине нашего столетия благодаря таким полупроводникам появились сравнительно дешевые термоэлектрические кондиционеры без движущихся частей, в которых перевод из охлаждающего режима в отопительный достигался простой переменой направления тока. Насколько экономичными оказались новые устройства? Чтобы ответить на этот вопрос, следует подробнее остановиться на критериях оценки эффективности тепловых машин вообще.
Трудно сказать, кто первым ввел в обиход понятие коэффициента полезного действия - КПД. Но так или иначе, эта величина оказалась на редкость удобной для оценки совершенства прежде всего простейших механизмов - рычагов, клиньев, винтовых и зубчатых передач, блоков и т. д. Все это преобразователи механической мощности. В идеале она оставалась бы неизменной, но реально, из-за трения деталей, частью теряется, превращаясь в теплоту. Отношение мощностей на выходе и на входе и есть КПД. Позднее его с успехом применили для оценки электрических и гидравлических машин. И здесь зависимость оставалась прежней - в идеальном случае КПД был равен единице.
Но в отношении тепловых машин универсальность понятия КПД оказалась сильно поколебленной: для тепловых двигателей, даже идеальных, он всегда меньше единицы и зависит от температур источника тепла и окружающей среды. А применительно к холодильным машинам и тепловым насосам КПД вообще утрачивает смысл. Разделив холодопроизводительность - теплоту, отводимую из холодильной камеры, - на электроэнергию, затраченную компрессором, получим величину, которая в зависимости от температур окружающей среды и холодильной камеры теоретически может изменяться от нуля до бесконечности! Назвать ее КПД ни у кого не повернулся язык, поэтому ей дали название холодильного коэффициента и с общего молчаливого согласия приняли: для холодильных машин понятие КПД неприменимо.
Гидравлическая аналогия четырех принципов отопления:
1. Отопление холодильной машиной. Поддерживать повышенный уровень воды в левом резервуаре можно за счет понижения уровня в правом резервуаре, из которого непрерывно откачивается вода. Откачка производится насосом, приводимым в действие гидротурбиной, питаемой водой из верхнего резервуара. При указанных на рисунке числах получается, что 1 кг воды, стекающей из верхнего резервуара в водоем.обеспечивает подачу 5 кг воды из правого резервуара в левый.
2. Отопление тепловым насосом. Забирая воду непосредственно из водоема, а не из резервуара с пониженным уровнем, как в предыдущем случае, можно существенно повысить производительность: на 1 кг воды, стекающей из верхнего резервуара в водоем, приходится уже 10 кг воды. подаваемой в правый резервуар.
3. Отопление электронагревателем. Заполняя резервуар водой непосредственно из верхнего резервуара, мы имеем самый расточительный способ поддержания уровня: если в предыдущих случаях отношения нагнетаемой воды к расходуемой составляет соответственно 5 и 10, то в этом случае оно всего-навсего 1.
4. Отопление термоэлектрическими элементами. Его можно уподобить работе эжектора, в котором каждый кг падающей с большой высоты воды присасывает из водоема еще 9 кг и вместе с ними поступает в резервуар.
Схема полупроводникового термоэлемента.
Если холодильный коэффициент может быть равным и нулю, и единице, и любой другой величине, то для тепловых насосов отношение теплоты на выходе к механической работе на входе всегда больше единицы и тоже может достигать бесконечно больших значений в зависимости от температур в отапливаемом помещении и на улице. Такое отношение уж и вовсе неудобно было называть КПД, и в теории тепловых насосов появился термин - коэффициент преобразования.
В чем же секрет пробуксовки понятия КПД в приложении к тепловым машинам?
Схема установки 1959 года, предложенная комиссией президиума АН СССР.
В жидкость, залитую в сосуд Дьюара. помещены полупроводниковая термобатарея (левое плечо схемы) и омический нагреватель такой же мощности (правое плечо). Питание к ним подводится через крышку от аккумуляторной батареи и от сети. Присосы тепла извне исключены: оба спая термобатареи находятся внутри сосуда. При пропускании тока через правое плечо омический нагреватель - на нем выделяется ровно столько тепла, сколько подведено электроэнергии. При переключении питания на левое плечо - к термобатарее - при тех же показаниях приборов количество тепла устойчиво, во многих опытах в 2,2-2,5 раза превышало количество тепла, выделяемого на нагревателе!

