- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Квант. Эйнштейн, Бор и великий спор о природе реальности - Манжит Кумар
Шрифт:
Интервал:
Закладка:
Бор, Гейзенберг, Паули и Борн не совсем понимали, к чему клонит Эйнштейн. Он не сформулировал свою задачу четко: показать, что квантовая теория противоречива и поэтому не является законченной. Конечно, редукция волновой функции происходит мгновенно, думали они, но ведь это абстрактная волна вероятности, а не реальная волна, распространяющаяся в обычном трехмерном пространстве. Также не представлялось возможным на основании наблюдения происходящего с отдельным электроном сделать выбор между двумя подходами, о которых говорил Эйнштейн. В обоих случаях электрон проходит через щель и в какой-то точке ударяется о пластину.
“Я в очень затруднительном положении, поскольку не вполне понимаю, что имел в виду Эйнштейн. Нет сомнений, это моя вина”, — сказал Бор42. И прибавил: “Я не знаю, что собой представляет квантовая механика. Я думаю, мы имеем дело с некими математическими методами, адекватными для описания наших экспериментов”43. Вместо ответа Эйнштейну Бор просто еще раз изложил свои взгляды. Ответный ход в этой игре в квантовые шахматы датский гроссмейстер сделал тем же вечером, в последний день конференции. Об этом он подробно рассказал в статье, написанной в 1949 году по случаю семидесятилетия своего оппонента44.
Согласно Бору, Эйнштейн, анализируя свой мысленный эксперимент, предполагал, что положение и экрана, и фотографической пластинки строго определены в пространстве и во времени. Если это так, значит, утверждал Бор, предполагается, что оба эти предмета имеют бесконечную массу, поскольку только в этом случае вылет электрона из щели не сопровождается неопределенностью положения или времени. Тогда точный импульс и энергия электрона неизвестны. Это единственно возможный сценарий, утверждал Бор, учитывая, что в соответствии с принципом неопределенности, чем точнее известны координаты электрона, тем менее точным будет результат одновременного измерения импульса. Бесконечно тяжелый экран в мысленном эксперименте Эйнштейна не оставляет места для неопределенности положения электрона в пространстве и во времени. Однако за эту точность придется заплатить: импульс электрона и его энергия будут полностью неопределенны.
Более реалистично, считал Бор, предположить, что масса экрана конечна. Хотя по-прежнему экран остается очень тяжелым, при пролете электрона через щель он чуть-чуть сдвинется. Этот сдвиг настолько мал, что в лабораторных условиях заметить его невозможно, однако в абстрактном мире мысленного эксперимента, где измерительные приборы обладают абсолютной точностью, определить его не представляет проблемы. Поскольку экран сдвигается, в процессе дифракции положение электрона в пространстве и во времени точно не определено. Это приводит к неопределенности значений его импульса и энергии. Однако в сравнении со случаем бесконечно тяжелого экрана можно точнее предсказать место, где дифрагированный электрон ударяется о пластину. В пределах, заданных принципом неопределенности, утверждал Бор, квантовая механика дает настолько полное описание отдельного события, насколько это вообще возможно.
Ответ Бора не произвел впечатления на Эйнштейна. Он попросил рассмотреть возможность проконтролировать и измерить импульс и энергию, переданные экраном частице, будь то электрон или фотон, при прохождении через щель. Тогда, возражал Эйнштейн, состояние частицы сразу после прохождения щели можно будет определить с большей точностью, чем та, которую допускает принцип неопределенности. Проходя через щель, говорил Эйнштейн, частица перестает двигаться прямолинейно. Траектория ее движения к экрану определяется законом сохранения импульса, согласно которому сумма импульсов двух взаимодействующих тел (частицы и экрана) должна оставаться неизменной. Если частица отклоняется вверх, экран должен сдвинуться вниз, и наоборот.
Эйнштейн использовал введенный Бором для своих целей подвижный экран и модифицировал свой мысленный эксперимент, поместив еще один экран с двумя щелями между подвижным экраном и фотопластинкой. Эйнштейн уменьшил интенсивность пучка настолько, что единовременно только одна частица могла пройти через щель в первом экране S1 и через одну из двух щелей экрана S2. Каждая из частиц, попадая на фотографическую пластинку, оставляет на ней неисчезающий след. Дальше происходит нечто поразительное. То, что вначале казалось случайными вспышками, по мере того как все больше частиц оставляет след на пластинке, следуя статистическим закономерностям, превращается в картину интерференции, состоящую из светлых и темных полос. Поскольку каждая частица ответственна только за одну отметку на экране, она, вне всякого сомнения, подчиняясь статистическому императиву, вносит вклад в изображение на пластинке.
Рис. 15. Мысленный эксперимент Эйнштейна с двумя щелями. Крайний справа рисунок — картина интерференции, которая будет видна на экране.
Контролируя и измеряя передачу импульса от первого экрана частице, можно, утверждал Эйнштейн, определить, куда отклонится частица: по направлению к верхней или нижней щели второго экрана. Исходя из того, где она ударилась о фотографическую пластинку и как двигался первый экран, можно определить, через какую из двух щелей частица прошла. Казалось, Эйнштейну удалось придумать эксперимент, позволяющий измерить координату и импульс частицы точнее, чем это допускает принцип неопределенности. Создавалось впечатление, что такой эксперимент противоречит еще одной доктрине копенгагенской интерпретации: в рамках принципа дополнительности Бора постулируется, что в одном эксперименте могут проявляться лишь корпускулярные либо волновые свойства электрона или фотона.
В аргументации Эйнштейна должен был найтись изъян. Чтобы его отыскать, Бор решил проанализировать, какие устройства использовались в этом эксперименте. Он сделал небольшой чертеж. Бор сосредоточился на первом экране, понимая, что возможность контролировать и измерять импульс, переданный от частицы экрану, зависит от того, может ли экран двигаться вертикально. Именно возможность наблюдать, сдвинулся экран вверх или вниз после прохождения частицы через щель, позволяет определить, прошла частица через верхнюю или через нижнюю щель во втором экране после того, как она ударилась о фотопластинку.
Эйнштейн, несмотря на годы, проведенные в патентном бюро, не учел деталей. А Бор знал, что квантовый дьявол именно в них. Он заменил первый экран другим, подвешенным на двух пружинах, закрепленных на неподвижной рамке. Это позволяло измерить импульс, переданный экрану при прохождении частицы через щель. Измерительное устройство было простым: стрелка, закрепленная на рамке, и шкала, нанесенная непосредственно на экран. Несмотря на свою простоту, прибор был достаточно чувствительным, чтобы в мысленном эксперименте можно было наблюдать взаимодействие одной частицы и экрана.
Рис. 16. Схема Бора с подвижным первым экраном.
Бор утверждал, что если экран уже двигался с некоторой неизвестной скоростью, превышающей скорость, обязанную взаимодействию с проходящей через щель частицей, то выяснить, чему равен переданный импульс, невозможно. Следовательно, нельзя узнать и траекторию частицы. С другой стороны, если можно проконтролировать и измерить импульс, переданный частицей экрану, в соответствии с принципом неопределенности одновременно имеется неопределенность в положении экрана и щели. Каким бы точным ни было измерение импульса экрана в вертикальном направлении, оно в меру соотношения неопределенности строго связано с соответствующей неточностью измерения вертикального смещения.
Кроме того, по мнению Бора, неопределенность положения первого экрана разрушает интерференционную картину. Пусть точка D на фотопластинке — точка деструктивной интерференции, то есть она попадает в темную полосу интерференционной картины. Вертикальное смещение первого экрана приведет к изменению длины двух путей: ABD и ACD {рис. 15). Если новые пути отличаются на половину длины волны, в том же месте будет уже не деструктивная, а конструктивная интерференция: точка D попадет в светлую полосу.
Чтобы учесть неопределенность вертикального смещения первого экрана S1, требуется “усреднение” по всем его возможным положениям. Это приведет к интерференции где-то посередине, между местами максимумов полностью конструктивной и полностью деструктивной интерференции, и в результате к размыванию интерференционной картины на фотопластинке. Бор утверждал, что, контролируя передачу импульса от частицы первому экрану, можно проследить траекторию частицы, проходящей через щель во втором экране, но это разрушит интерференционную картину. Он пришел к заключению, что “предложенный [Эйнштейном] контроль переданного импульса будет включать в себя свободу в определении положения диафрагмы [S1], что исключает возникновение интересующего явления интерференции”45. Бор отстоял не только принцип неопределенности, но и утверждение, что волновой и корпускулярный аспекты микрофизического объекта не могут проявляться в эксперименте одновременно, будь он мысленный или нет.

