- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Формы в мире почв - Игорь Николаевич Степанов
Шрифт:
Интервал:
Закладка:
ВРАЩЕНИЕ НА ПЛОСКОСТИ
Разные народы читают книги по-разному: одни слева направо, другие справа налево, третьи сверху вниз. Поэтому не будем удивляться предложению «читать» почвенные карты или аэрофотоснимки по кругу. Ведь многие почвенные ареалы располагаются у подножия куполов, создавая обрамление в виде круга. В таком случае их структура описывается операциями вращения, а элементами симметрии здесь выступают простые и инверсионные оси и точки — центры симметрии.
Различают осевую и радиальную симметрии. Осевая обнаруживает себя тогда, когда, например, два почвенных ареала F1 и F2 разделены осью L (см. рис. 25, VIII). Если повернуть один из них вокруг оси на 180°, то эти ареалы совместятся. При этом один ареал будет зеркальным отображением другого. Значит, поворот вокруг оси можно назвать еще и зеркальным отражением. Маленькая спираль в середине ареала F1 будет иметь противоположное вращение в ареале F2. Одна операция вращения создает зеркально-конгруэнтное сочетание ареалов, а две такие операции — тождественно-конгруэнтное. Они соответствуют сдвигу, или повороту.
Радиальная симметрия характеризуется следующими свойствами движений: почвенные ареалы совмещаются при обороте вокруг точки С, которую называют центром вращения (см. рис. 25, IX). При этом соответственные точки АВС и А1B1C1 ареалов F1 и F2 совпадают, а нанесенные внутри них спирали не меняют направления. Ареал, отраженный таким способом, является тождественно-конгруэнтным.
Простейшие примеры кругового расположения почвенных ареалов показаны на рис. 25, X. Здесь ареалы классифицируются по характеру взаимного расположения двумя операциями: 1) вращением и зеркальным отражением L66P, 2) только вращением L6. Но они могут залегать в пространстве иначе и иметь другие порядки осей: L2, L3, L4…
Классификацию сочетаний ареалов по способу вращения можно разработать на основе мультипликативной подгруппы, основанной на операции умножения на плоскости. Однако если структура почвенного покрова имеет более сложный характер, то можно использовать группу, содержащую аддитивную подгруппу, основанную на операции суммирования параметров: Za=x+iy. Здесь выражение iy символизирует вращение, х — приращение. Тогда из комплексного числа получим формы, характеризующие спиральное вращение..
ТРАНСЛЯЦИЯ С ОДНОМЕРНОЙ ПЕРИОДИЧНОСТЬЮ
При беглом взгляде на карту или снимок почвенные ареалы кажутся хаотично разбросанными по поверхности. Однако, приглядевшись внимательнее, увидим, что они располагаются или вдоль одной линии — тогда это будет трансляция с одномерной периодичностью' типа «цепь» (см. рис. 24, А), или вдоль двух линий — тогда это будет дважды периодическая трансляция типа «узлы» (см. рис. 24, Б). Последнюю рассмотрим в следующем разделе.
Поступательный перенос ареала в пространстве на некоторое расстояние параллельно самому себе вдоль прямой линии (оси) называется трансляцией. Эта прямая линия — элемент симметрии, ось трансляции, а наименьшая величина переноса вдоль нее — период трансляции (а). Понятие о трансляции дает вектор Т, характеризующий направление и величину поступания.
Усложнение переносов путем использования зеркала — односторонней (полярной) плоскости — образует особую симметрию, называемую бордюром. Последняя широко распространена в мире почв. С ее помощью классифицированы почвенные профили (см. рис. 6, 7). Теперь используем симметрию бордюров для распознавания структуры почвенных ареалов.
Рис. 27. Классификация почвенного покрова с помощью симметрии бордюров
I, II — различные формы покровов, III — их геометрическая интерпретация, IV — выражение структуры покровов в виде буквенных индексов Объяснения см. в тексте
Идеализированные почвенные ареалы русел, пойм, разломов, барханов всех возможных видов симметрии бордюров показаны на рис. 27:1 — бесконечные континуальные; II — конечные, дискретные, изолированные (пятна солончаков, такыров и т. п.); III — геометрическое изображение видов симметрии: сплошная линия — ось переносов; прерывистая линия — плоскость скользящего отражения; вертикальная линия — плоскость; а — период трансляции; черные треугольники — почвенные ареалы; IV — буквенная запись видов симметрии бордюров: а — период трансляции; а — плоскость скользящего отражения; т — плоскость зеркального отражения; точка — знак параллельности; двоеточие — знак перпендикулярности.
Опишем бордюры подробнее. Простая трансляция произвольной формы почвенного ареала (симметричного или асимметричного — это не имеет значения) показана на рис. 27, /. Если ареал переносить на равные расстояния а без изменения его положения в пространстве (без поворотов, отражений), а лишь путем конгруэнтного наложения, то такой вид симметрии будет обычной трансляцией, и символ симметрии записывается как (а). Заметим, здесь ось переносов поляр-на, а сочетание ареалов асимметрично: оно имеет лишь однонаправленную эволюцию.
Комбинации оси переносов с зеркальным отражением создают различные виды симметрии бордюров. Если ось переносов сочетать с продольной плоскостью симметрии m, то образуется вид симметрии, который записывается символами (а)*т. Это означает, что ось переносов а параллельна зеркальной плоскости т (рис. 27, 2). Комбинация оси переносов а с поперечной плоскостью симметрии т дает еще один вид симметрии бордюров с символами (а):m, где: означает, что ось переносов перпендикулярна плоскости т (рис. 27, 5).
При сочетании оси трансляций с поперечной и продольной плоскостями симметрии создается широко распространенный вид симметрии бордюров (а):2*т (рис. 27, 4). Комбинация оси переноса с поперечными осями второго порядка, что в формуле записывается цифрой 2. новый вид симметрии бордюров, обозначаемый символом (а):2. Здесь почвенный ареал, состоящий из двух частей, подвергается элементарному переносу (а), а одна часть ареала переходит в другую при поворотах на 180° вокруг оси, перпендикулярной особенной плоскости.
Почвенные ареалы, структура которых на плоскости отражает нетривиальную группу произведения — группу скользящего отражения, имеет, кроме оси переносов

