- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Большая Советская Энциклопедия (ОП) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Т. о., выполнение «правил О.», равно как и упомянутого выше «принципа эффективности», отнюдь не является неким универсальным, абсолютным «законом», а предполагает непременный учёт конкретных особенностей данной ситуации. В неформализованных научных теориях, а тем более в практической деятельности, где роль О. ничуть не менее важна, чем в дедуктивных науках, О. вообще, как правило, не имеют точных канонизированных форм, которым было преимущественно посвящено предыдущее изложение. Чаще всего они носят неявный и контекстуальный характер, причём роль полного «раскрытия» определяемого понятия сплошь и рядом выполняется всем контекстом в целом. (Классический пример диалектического подхода к проблеме О. представляет собой «Капитал» К. Маркса, где категории политической экономии не вводятся раз и навсегда формальными дефинициями, а раскрываются всё глубже и глубже в ходе логического и исторического анализа.) Тенденции к уточнению и спецификации видов О., применяемых в тех или иных конкретных областях, при всей их плодотворности не дают никаких оснований рассчитывать на некую единую, жёсткую и полную «классификацию» О., так что нечего и говорить о единой «теории О.» (хотя, конечно, применение этого термина в рамках конкретной методологической схемы вполне оправданно). Подобно понятию доказательства , которое, при всех его возможных уточнениях, означает в конечном счёте «всё, что доказывает», термин «О.» относится не только к формальным объектам того или иного специального вида, а ко всему, что так или иначе что-то определяет, О. различных уровней абстракции, точности и формальности не только составляют тот базис, на котором строится всё научное познание, но и служат важнейшим инструментом при построении конкретных научных дисциплин и, более широко, при осмыслении любой практической деятельности. См. также Определение через абстракцию , Понятие .
Лит.: Энгельс Ф., Анти-Дюринг, Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20; Аристотель, Аналитики первая и вторая, пер. с греч., М., 1952; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948; Горский Д. П., О видах определений и их значении в науке, в сборнике: Проблемы логики научного познания, М., 1964; Карри X. Б., Основания математической логики, пер. с англ., М., 1969, гл. 1—3.
Ю. А. Гастев.
Определение судебное
Определе'ние суде'бное , по советскому праву: 1) решение суда первой инстанции по отдельным процессуальным вопросам, возникающим в ходе уголовного или гражданского дела, а также о прекращении дела; 2) всякое решение, принятое судом кассационной или надзорной (кроме президиумов и пленумов судов) инстанций (об оставлении без изменения, отмене или изменении приговора или постановления суда первой инстанции); 3) решение о назначении принудительных мер медицинского характера; 4) решение суда, которым обращается внимание соответствующих организаций или должностных лиц на обстоятельства, способствовавшие правонарушениям (т. н. частное, или особое, О. с.). О. с. выносятся в совещательной комнате либо после совещания судей на месте, оформляются в виде отдельного документа или заносятся в протокол судебного заседания. Закон устанавливает перечень О. с., которые могут быть обжалованы или опротестованы (например, ст. 331 УПК РСФСР).
Определение через абстракцию
Определе'ние че'рез абстра'кцию , способ описания (выделения, «абстрагирования») не воспринимаемых чувственно («абстрактных») свойств предметов путём задания на предметной области некоторого отношения типа равенства (тождества , эквивалентности ). Такое отношение, обладающее свойствами рефлексивности , симметричности и транзитивности , индуцирует разбиение предметной области на непересекающиеся классы (классы абстракции, или классы эквивалентности), причём элементы, принадлежащие одному и тому же классу, неотличимы по определяемому т. о. свойству. Так, например, в политической экономии определяется стоимость (через отношение обмениваемости товаров), в теории множеств — мощность множеств (через отношение теоретико-множественной эквивалентности). О. ч. а. всегда (хотя обычно и неявно) опирается на т. н. принцип абстракции, или принцип свёртывания, согласно которому каждому свойству соотносится класс (множество) объектов, обладающих этим свойством. В практических приложениях этот принцип весьма удобен, естествен и плодотворен; но постулирование его как универсального методологического закона приводит к трудностям, проявляющимся прежде всего в виде парадоксов (логики и теории множеств). См. Аксиоматический метод , Метаматематика , Непротиворечивость .
Определённый интеграл
Определённый интегра'л , одно из основных понятий математического анализа, к которому приводится решение ряда задач геометрии, механики, физики. О. и. является числом, равным пределу сумм особого вида (интегральных сумм), соответствующих функции f (x ) и отрезку [ а , b ]; обозначается . Геометрически О. и. выражает площадь «криволинейной трапеции», ограниченной отрезком [ а , b ] оси Ох , графиком функции f (x ) и ординатами точек графика, имеющих абсциссы а и b . Точное определение и обобщение О. и. см. в статьях Интеграл , Интегральное исчисление .
Определитель
Определи'тель , детерминант, особого рода математическое выражение, встречающееся в различных областях математики. Пусть дана матрица порядка n , т. е. квадратная таблица, составленная из п 2 элементов (чисел, функций и т. п.):
(1)
(каждый элемент матрицы снабжён двумя индексами: первый указывает номер строки, второй — номер столбца, на пересечении которых находится этот элемент). Определителем матрицы (1) называется многочлен, каждый член которого является произведением n элементов матрицы (1), причём из каждой строки и каждого столбца матрицы в произведение входит лишь один сомножитель, т. е. многочлен вида
å ± a 1 a a 2 b ...an g . (2)
В этой формуле a, b, ..., g есть произвольная перестановка чисел 1, 2, ..., n . Перед членом берётся знак +, если перестановка a, b, ..., g чётная, и знак – , если эта перестановка нечётная. [Перестановку называют чётной, если в ней содержится чётное число нарушений порядка (или инверсий), т. е. случаев, когда большее число стоит впереди меньшего, и нечётной – в противоположном случае; так, например, перестановка 51243 – нечётная, т. к. в ней имеется 5 инверсий 51, 52, 54, 53, 43.] Суммирование производится по всем перестановкам a, b, ..., g чисел 1, 2, ..., n . Число различных перестановок n символов равно n ! = 1·2·3·...·n ; поэтому О. содержит n ! членов, из которых 1 /2 n ! берётся со знаком + и 1 /2 n ! со знаком –. Число n называется порядком О.
О., составленный из элементов матрицы (1), записывают в виде:
(3)
(или, сокращённо, в виде |aik |). Для О. 2-го и 3-го порядков имеем формулы:
= a 11 a 22 – a 12 a 21 ,
= a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 – a 11 a 23 a 32 – a 12 a 21 a 33 – a 13 a 22 a 31 .
О. 2-го и 3-го порядков допускают простое геометрическое истолкование: равен площади параллелограмма, построенного на векторах a 1 = (x 1 , y 1 ) и a 2 = (х 2 .у 2 ), а равен объёму параллелепипеда, построенного на векторах a 1 = (x 1 , y 1 , z 1 ), a 2 = (x 2 , у 2 , z2 ) и а 3 = (х 3 , y 3 , z 3 ) (системы координат предполагаются прямоугольными).

