- Любовные романы
- Фантастика и фэнтези
- Ненаучная фантастика
- Ироническое фэнтези
- Научная Фантастика
- Фэнтези
- Ужасы и Мистика
- Боевая фантастика
- Альтернативная история
- Космическая фантастика
- Попаданцы
- Юмористическая фантастика
- Героическая фантастика
- Детективная фантастика
- Социально-психологическая
- Боевое фэнтези
- Русское фэнтези
- Киберпанк
- Романтическая фантастика
- Городская фантастика
- Технофэнтези
- Мистика
- Разная фантастика
- Иностранное фэнтези
- Историческое фэнтези
- LitRPG
- Эпическая фантастика
- Зарубежная фантастика
- Городское фентези
- Космоопера
- Разное фэнтези
- Книги магов
- Любовное фэнтези
- Постапокалипсис
- Бизнес
- Историческая фантастика
- Социально-философская фантастика
- Сказочная фантастика
- Стимпанк
- Романтическое фэнтези
- Ироническая фантастика
- Детективы и Триллеры
- Проза
- Юмор
- Феерия
- Новелла
- Русская классическая проза
- Современная проза
- Повести
- Контркультура
- Русская современная проза
- Историческая проза
- Проза
- Классическая проза
- Советская классическая проза
- О войне
- Зарубежная современная проза
- Рассказы
- Зарубежная классика
- Очерки
- Антисоветская литература
- Магический реализм
- Разное
- Сентиментальная проза
- Афоризмы
- Эссе
- Эпистолярная проза
- Семейный роман/Семейная сага
- Поэзия, Драматургия
- Приключения
- Детская литература
- Загадки
- Книга-игра
- Детская проза
- Детские приключения
- Сказка
- Прочая детская литература
- Детская фантастика
- Детские стихи
- Детская образовательная литература
- Детские остросюжетные
- Учебная литература
- Зарубежные детские книги
- Детский фольклор
- Буквари
- Книги для подростков
- Школьные учебники
- Внеклассное чтение
- Книги для дошкольников
- Детская познавательная и развивающая литература
- Детские детективы
- Домоводство, Дом и семья
- Юмор
- Документальные книги
- Бизнес
- Работа с клиентами
- Тайм-менеджмент
- Кадровый менеджмент
- Экономика
- Менеджмент и кадры
- Управление, подбор персонала
- О бизнесе популярно
- Интернет-бизнес
- Личные финансы
- Делопроизводство, офис
- Маркетинг, PR, реклама
- Поиск работы
- Бизнес
- Банковское дело
- Малый бизнес
- Ценные бумаги и инвестиции
- Краткое содержание
- Бухучет и аудит
- Ораторское искусство / риторика
- Корпоративная культура, бизнес
- Финансы
- Государственное и муниципальное управление
- Менеджмент
- Зарубежная деловая литература
- Продажи
- Переговоры
- Личная эффективность
- Торговля
- Научные и научно-популярные книги
- Биофизика
- География
- Экология
- Биохимия
- Рефераты
- Культурология
- Техническая литература
- История
- Психология
- Медицина
- Прочая научная литература
- Юриспруденция
- Биология
- Политика
- Литературоведение
- Религиоведение
- Научпоп
- Психология, личное
- Математика
- Психотерапия
- Социология
- Воспитание детей, педагогика
- Языкознание
- Беременность, ожидание детей
- Транспорт, военная техника
- Детская психология
- Науки: разное
- Педагогика
- Зарубежная психология
- Иностранные языки
- Филология
- Радиотехника
- Деловая литература
- Физика
- Альтернативная медицина
- Химия
- Государство и право
- Обществознание
- Образовательная литература
- Учебники
- Зоология
- Архитектура
- Науки о космосе
- Ботаника
- Астрология
- Ветеринария
- История Европы
- География
- Зарубежная публицистика
- О животных
- Шпаргалки
- Разная литература
- Зарубежная литература о культуре и искусстве
- Пословицы, поговорки
- Боевые искусства
- Прочее
- Периодические издания
- Фанфик
- Военное
- Цитаты из афоризмов
- Гиды, путеводители
- Литература 19 века
- Зарубежная образовательная литература
- Военная история
- Кино
- Современная литература
- Военная техника, оружие
- Культура и искусство
- Музыка, музыканты
- Газеты и журналы
- Современная зарубежная литература
- Визуальные искусства
- Отраслевые издания
- Шахматы
- Недвижимость
- Великолепные истории
- Музыка, танцы
- Авто и ПДД
- Изобразительное искусство, фотография
- Истории из жизни
- Готические новеллы
- Начинающие авторы
- Спецслужбы
- Подростковая литература
- Зарубежная прикладная литература
- Религия и духовность
- Старинная литература
- Справочная литература
- Компьютеры и Интернет
- Блог
Природа боится пустоты - Дмитрий Александрович Фёдоров
Шрифт:
Интервал:
Закладка:
Отсюда путем достаточно трудоемких, но тривиальных алгебраических преобразований можно получить, выражение для диаметра Земли
Теперь вспомним, что выше мы уже установили равенство
из которого можно вывести, например, что
Таким образом, диаметр Земли можно выразить только через диаметры Солнца и Луны
откуда получаем
иВ результате оказалось, что диаметр Земли в 1/0,149 = 6,7 раз меньше солнечного и в 2,85 раза больше лунного. Что касается Земли и Луны, то истинное соотношение их размеров равно 3,67, и в данном случае полученный результат достаточно точен, однако лишь благодаря малой чувствительности нашей формулы к величине DS (если Солнце очень большое, то мы всегда получим результат близкий к 3). Что же касается соотношений размеров Земли и Солнца, то истинная величина равна не 6,7, а 109,1, то есть Аристарх ошибся более чем в 16 раз. Впрочем, даже полученное значение оказалось весьма красноречивым: Солнце по сравнению с Землей выглядело просто огромным. Более того, Аристарх усилил эффект своего открытия, указав, что в рассматриваемом случае соотношение объемов окажется равным уже 1 к 301.
По словам Архимеда и Плутарха (в самом сохранившемся тексте «О величинах и расстояниях…» об этом ничего не говорится), данный результат натолкнул Аристарха на мысль, что именно Земля обращается вокруг Солнца, а не наоборот, ведь немыслимо, чтобы большое тело обращалось вокруг столь малого. Поскольку этот вывод опирался единственно на эстетический аргумент о том, как якобы должны соотноситься движения тел различной величины, и противоречил всем греческим представлениям об устройстве мира, то теорию о подвижной Земле не принял ни один из античных астрономов. Исключением оказался только некий Селевк из Селевкии, о котором, собственно говоря, больше ничего не известно.
Характерно, что сами расчеты Аристарха никто не оспаривал (более того, их лишь уточняли), однако статус математики в иерархии древней мысли был существенно иным, нежели сегодня. Сама по себе она ценилась очень высоко, но результаты вычислений и построений, полученные даже на основании очень точных наблюдений, не могли стать основанием для пересмотра общей картины мира. Правильное использование геометрии заключалось в том, чтобы узнавать абсолютные истины об идеальных объектах, а вовсе не о материальных объектах. Более того, отказ от размещения неподвижной Земли в центре Вселенной автоматически приводил к необходимости признать неверными все знания о природе, которые имелись у греков. Можно было не соглашаться с механикой Аристотеля и его концепцией естественного движения (этот момент особенно легко оспорить, если заранее отказаться от разделения мира на подлунный и надлунный), но практически никто не сомневался в том, что если бы Земля действительно двигалась, то мы бы обязательно ощущали ее полет. Все соглашались, что подброшенные вверх тела должны отставать от движущейся планеты, но в реальности они всегда падают на свои изначальные места, даже если были закинуты очень высоко. В этой связи требовалось не просто показать, что Земля вращается вокруг Солнца, но также перестроить всю динамику, равно как и переосмыслить устройство космоса. К временам Галилея, когда потребовалось создать работающую теорию полета пушечного ядра, эта проблема стала актуальной и востребованной. Для греков же проблема движения и размеров мира оставалась исключительно спекулятивной.
Касательно последнего вопроса Аристарх все же сделал некоторые шаги, поскольку заключил, что расстояние до звезд невероятно огромны по сравнению с размером земной орбиты. Неизвестно, как именно это обосновывалось, но, скорее всего речь шла об отсутствии заметного годичного параллакса звезд. В самом деле, если Земля обращается вокруг Солнца, то звезды должны смещаться то в одну, то в другую сторону по мере того, как будет меняться наше положение, однако ничего подобного не наблюдается. Объяснить это можно так: расстояние до звезд настолько велико, что параллакс оказывается чрезвычайно таким малым и его попросту невозможно обнаружить никакими средствами. Любопытно, что Аристотель, напротив, полагал отсутствие звездного параллакса доказательством неподвижности Земли. Архимед, от которого мы и знаем о воззрениях Аристарха, судя по всему, все же считал Землю расположенной в центре мира: по крайней мере, такой вывод можно сделать по скудным описаниям изготовленного им небесного глобуса, вывезенного римским полководцем Марцеллом из захваченных Сиракуз.
В любом случае Аристарх не стал (не сумел или не захотел) заниматься глубокой проработкой гелиоцентрической системы. Он не строил подробных трехмерных моделей и не пытался определить, как будут выглядеть траектории небесных тел при наблюдении с движущейся Земли (задача в целом вполне посильная для талантливого античного геометра, который, безусловно, весьма удивился бы полученным результатам). Похоже, что Аристарх не отнесся к своему открытию с должной серьезностью, выдвинув его просто как одно из соображений, сопровождающих геометрические выкладки. Другие астрономы и вовсе увидели лишь любопытный курьез, но никак не повод для размышлений. До работ Коперника все космические модели, в которых предполагалось поступательное движение Земли, продолжали называть пифагорейскими, а с именем Аристарха связывали лишь гипотезу о суточном вращении Земли, которое оказывалось необходимым для объяснения ежедневного оборота звездной сферы.
Вернемся, однако же, к геометрическим построениям. Пока что мы отдельно определяли соотношения расстояний и соотношения размеров. Чтобы увязать их между собой нам понадобится четвертое наблюдение. Поскольку принято, что угловой размер Луны составляет 2°, то можно выразить ее диаметр как
Иными словами, согласно вычислениям Аристарха получилось, что Луна удалена от нас на 1/0,035 = 28,57 своих диаметров. Истинное значение, однако же, составляет 110,4 лунных диаметров, и такая большая неточность связана с очень грубой оценкой углового размера Луны. На самом деле он равен не 2°, а всего лишь 0,519°. Этот момент не совсем ясен, поскольку Архимед в своем «Исчисление песчинок» приводит для этой величины значение 0,5°, ссылаясь именно на Аристарха. Где именно допущена ошибка — неизвестно.
Из полученных Аристархом данных несложно вычислить, что расстояние от нас до Луны составляет 10 земных диаметров (в реальности — около 30), а до Солнца — 191 земной диаметр (в действительности в среднем это значение равно 11600). При этом важно помнить, что все результаты получены в пропорциях и не содержат ни одного значения, выраженного в реальных единицах длинны.
Поскольку во времена Аристарха не существовало привычной для нас алгебры и тригонометрии, то ему пришлось самостоятельно разработать некоторые способы вычислений, однако выкладки и построения все равно оказались чрезвычайно громоздкими, а

